Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Серооксид углерода

    В нефтяной и газовой промышленности процесс абсорбции применяется для разделения, осушки и очистки углеводородных газов. Из природных и попутных нефтяных газов путем абсорбции извлекают этан, пропан, бутан и компоненты бензина абсорбцию применяют для очистки природных газов от кислых компонентов — сероводорода, используемого для производства серы, диоксида углерода, серооксида углерода, сероуглерода, тиолов (меркаптанов) и т.п. с помощью абсорбции также разделяют газы пиролиза и каталитического крекинга и осуществляют санитарную очистку газов от вредных примесей. [c.192]


    Состав и качество кислых газов, с точки зрения использования их в процессе Клауса, зависят прежде всего от выбранного способа очистки газа (физическая или химическая абсорбция, адсорбция и т.д.). Кроме сероводорода в полученном в процессе очистки кислом газе присутствуют в большей или меньшей степени диоксид углерода, серооксид углерода, сероуглерод, меркаптаны, азот, могут присутствовать в небольших количествах сульфиды и т.п. [c.92]

    Сернистые природные газы многих месторождений наряду с НгЗ и СОг содержат также серооксид углерода, сероуглерод, тиолы и т. д. Для очистки таких газов использование МЭА неэффективно, так как, ак было указано выше, МЭА с СОЗ и СЗг образует необратимые соединения, которые, накапливаясь в растворе, снижают его поглотительную емкость. [c.49]

    В качестве поглотителей при адсорбционной очистке используются активированные угли и цеолиты. Активированные угли марок АР, APT хорощо сорбируют тиофен, сероуглерод, но плохо серооксид углерода и дисульфиды. [c.200]

    До последнего времени переработка сероводорода в серу во всех странах осуществляется, главным образом, по методу Клауса. Несмотря на многочисленные усовершенствования, этот метод сохраняет свои принципиальные недостатки является многостадийным и экономически оправдан только для установок с большой производительностью по сере (переработка больших количеств газа с высоким содержанием сероводорода). На термической стадии процесса образуется значительное количество сероуглерода и серооксида углерода, которые уходят с хвостовыми газами, что приводит к большим потерям серы. [c.164]

    Преимущество ТБФ — большая селективность в отношении системы H2S—СО2 и высокая поглотительная способность по отношению к сероводороду, меркаптанам, серооксидам углерода и другим сернистым соединениям. [c.183]

    Выбор поглотителя является основным моментом при реализации технологии очистки газа от сероводорода, диоксида углерода, серооксида углерода, сероуглерода, тиолов и т.д. От правильного выбора поглотителя зависят не только качество товарного газа, но и металло-и энергоемкость установок, а также вопросы охраны окружающей среды на объектах газовой промышленности. В ряде случаев от наличия остатков поглотителя в товарном газе зависит также эффективность дальнейшего использования газа в других отраслях промышленности. [c.50]

    На термической ступени установок Клауса применяют цилиндрические реакторы, состоящие из топочной камеры и трубчатого теплообменника. В торцевой части топочной камеры расположены горелочные устройства. Основная часть сероводородного газа и воздуха обычно подается по тангенциальным каналам. В зоне смешения горение происходит в закрученном потоке. Проходя решетку из расположенного в шахматном порядке огнеупорного кирпича, продукты сгорания поступают в основной топочный объем также цилиндрической формы, но большего диаметра. Затем продукты сгорания охлаждаются водой, проходя по трубному пространству трубчатого теплообменника, и поступают в конденсатор, откуда полученная в термической ступени сера выводится в хранилище серы. Технологический газ после термической ступени, содержащий непрореагировавший сероводород, сернистый ангидрид, образовавшийся одновременно с серой при пламенном сжигании сероводорода, а также серооксид углерода и сероуглерода (продукты побочных реакций, протекающих в реакторе), вновь подогревается в подогревателе до 220-300 °С и поступает на каталитическую ступень. В каталитическом слое происходит основная реакция [c.100]


    Выходящие с установок Клауса отходящие газы, в зависимости от эффективности работы и качества обрабатываемого сырья, обычно содержат 1. ..2% об. сероводорода, до 1% об. диоксида серы, до 0,4% об. серооксида углерода, до 0,3% об. сероуглерода, капельную и паровую серу (1...8 г/м ), а также по 1...1,5% об. водорода и оксида углерода, до 15% об. диоксида углерода, около 30% об. водяных паров и азот. Температура газов около 150 С, давление (избыточное) - не более 0,02...0,03 МПа. Указанные особенности определяют и технологию их доочистки. [c.173]

    После конвертора серооксида углерода и очистки на установке Стретфорда. [c.125]

    Углеводородные нефтяные и природные газы могут содержать в качестве примесей нежелательные кислые компоненты — диоксид углерода (СОг), сероводород (H2S), а так же сероорганические соединения — серооксид углерода ( OS), сероуглерод ( S2), меркаптаны (RSH), тиофены. [c.5]

    Сероводород, меркаптаны, серооксид углерода — высокотоксичные вещества. [c.5]

    Каталитические методы очистки газа от кислых компонентов применяют в тех случаях, когда в газе присутствуют соединения, недостаточно полно удаляемые с помощью жидких поглотителей или адсорбентов (например, сероуглерод, серооксид углерода, сульфиды, дисульфиды, тиофен). [c.15]

    Для очистки углеводородов от примесей применяют хорошо известные реагенты - гликоли, амины, щелочи и другие абсорбенты. В последние годы для очистки газообразных и жидких углеводородов от низших меркаптанов, сероводорода, серооксида углерода и диоксида углерода успешно применяют адсорбцию на цеолитах, совмещая процесс очистки с осушкой. Адсорбционные процессы используют при низкой начальной концентрации кислых газов. [c.84]

    Растворимость сероводорода в Селексоле" при давлении в абсорбере 7 МПа и температуре 20 С примерно в девять раз выше растворимости диоксида углерода. Серооксид углерода OS удаляется из природного газа примерно на 50 %. При понижении температуры разность в растворимостях извлекаемых компонентов газа и углеводородов еще более увеличивается, но понижение температуры сопровождается повышением вязкости абсорбента, и при температуре ниже минус 15 С он загустевает, образуя высоковязкую массу. [c.44]

    Нефтяные и природные газы наряду с углеводородами могут содержать кислые газы — диоксид углерода (СО ) и сероводород (Н jS), а также сероорганические соединения — серооксид углерода ( OS), сероуглерод ( Sj), меркаптаны (RSH), тиофены и другие примеси, которые осложняют при определенных условиях транспортирование и использование газов. При наличии диоксида углерода, сероводорода и меркаптанов создаются условия для возникновения коррозии металлов, эти соединения снижают эффективность каталитических процессов и отравляют катализаторы. Сероводород, меркаптаны, серооксид углерода — высокотоксичные вещества. Повыщенное содержание в газах диоксида углерода нежелательно, а иногда недопустимо еще и потому, что в этом случае уменьшается теплота сгорания газообразного топлива снижается эффективность использования магистральных газопроводов из-за повышенного содержания в газе балласта. Если рассматривать этот вопрос с указанных позиций, то серо- и кислородсодержащие соединения можно отнести к разряду нежелательных компонентов. Однако такая постановка вопроса не исчерпывает всей полноты проблемы, так как кислые газы являются в частности высокоэффективным сырьем для производства серы и серной кислоты. Поэтому при выборе процессов очистки газов учитывают возможности достижения заданной глубины извлечения нежелательных компонентов и использования их для производства соответствующих товарных продуктов. В Канаде, например, сера в зависимости от содержания в газе сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы, а также регламентируются условия разработки и эксплуатации некоторых месторождений [22]. Известны случаи, когда сероводородсодержащий природный таз добывают с целью производства серы, очищенный газ после извлечения сероводорода закачивают обратно в пласт для поддержания пластового давления. В ряде стран мира (США, Канаде, Франции) открытие крупных месторождений природного сероводородсодержащего газа положило начало широкому развитию в 50-х годах добычи и очистки такого газа и производству серы из этого сырья. В Канаде из сероводородсодержащего газа получено около 5,3 млн. т серы (по состоянию на начало 1978 г. доказанные запасы серы составляли 105 млн. т) [23]. [c.135]

    Серооксид углерода извлекается также за счет физического растворения в абсорбенте. В водных растворах OS гидролизуется  [c.60]

    Гидрирование и гидролиз сероорганическнх соединений сводятся к реакциям образования сероводорода и соединений, не содержащих серы. Способность индивидуальных соединений серы к реакции гидрирования увеличивается в следующем порядке тиофен, меркаптаны жирного ряда, сероуглерод, меркаптаны бензольного ряда, серооксид углерода. В промышленности наибольшее распространение получили кобальтмолибденовые и иикельмолибдеповые катализаторы. [c.201]


    Образовавшиеся HjS и СО2 поглощаются амином. Серооксид углерода может непосредственно вступать в обратимую реакцию с ДЭА с образованием тиокарбамата (аналогично СО2), а с МДЭА такая реакция невозможна. [c.60]

    На каждом ГПЗ существуют свои особенности очистки и разделения газа в зависимости от его состава и входных параметров, но стадии переработки газа для всех ГПЗ общие. На первом этапе осуществляется механическая сепарация газа, затем очистка его от кислых компонентов (от сероводорода, диоксида углерода, серооксида углерода, сероуглерода и меркаптанов) и разделение углеводородов, входящих в состав природного газа, обычно на сухой газ (С, - С2) и ШФЛУ с последующей реализацией этих продуктов как товарных, либо с выделением из ШФЛУ пропановой и бутановой фракции (или ПБФ) и легкого стабильного конденсата. [c.177]

    Несмотря на многочисленные усовершенствования,, этот метод сохраняет свои принципиальные недостатки является многостадийным и экономически оправдан только для установок с большой производительностью по сере (переработка больших количеств газа с высоким содержанием сероводорода). На термической стадии процесса образуется значительное количество сероуглерода и серооксида углерода, которые уходят с хвостовыми газами, что приводит к большим потерям серы. [c.239]

    Нефтезаводские газы, продукты стабилизации нефти и легкие фракции газовых конденсатов содержат различные примеси (так называемые кислые газы) диоксид углерода, сероводород, серооксид углерода, сероуглерод, меркаптаны. Все они являются вредными при проведении процессов нефтехимической переработки углеводородного сырья и должны быть удалены. [c.84]

    Разложению МЭА способствует также присутствие в газе серооксида углерода и сероуглерода. Для практических расчетов можно принять, что потери МЭА за счет разложения составляют 3,35 кг/1000 м СОз и около 1 кг/м OS или Sg, для диэтаноламина в присутствии СОз они составляют около 3,7 кг/1000 м СОз. Общие потери МЭА при очистке газа, как правило, не пре- [c.286]

    Серооксид углерода ( OS), карбонилсульфид — легко воспламеняющийся газ без цвета и запаха. Температура сжижения минус 50,2 °С, затвердевания минус 138,2 °С. Серооксид углерода имеет следующие характеристики  [c.28]

    Из кислых компонентов газа на его показатели заметное влияние оказывают сероводород и диоксид углерода, так как концентрации остальных компонентов — серооксида углерода, сероуглерода, тиолов и т. д. незначительны. [c.32]

    М[югие природные газы в своем составе содержат сернистые компопеиты и диоксид углерода. Среди сернистых компонентов чаще всего встречаются H2S, меркаптаны RSH, серооксид углерода OS, сероуглерод S2, сульфиды RSR. [c.168]

    Метилгндразнн Оксид углерода Серооксид углерода Сероуглерод [c.99]

    Конвертор серооксида углерода не работал при его работе концентрацию СО можно было бы снизнтьна 50—80 %. [c.125]

    Очистка от серосодержащих соединений. Природный газ содержит серу в виде сероводорода, сероуглерода S2, серооксида углерода OS, меркаптанов (главным образом этилмеркаптана jHsSH), содержание которых колеблется в пределах от 5 до 30 мг/м . Перед очисткой сероорганические соединения гидрируют до сероводорода на кобальтмолибденовом катализаторе при 350— 450°С, объемной скорости около 1000 ч по уравнениям реакций  [c.86]

    В отличие от хемосорбциопных способов методом физической абсорбции можно наряду с сероводородом и диоксидом углерода извлекать серооксид углерода, сероуглерод, меркаптаны, а иногда и сочетать процесс очистки с осушкой газа. Поэтому в некоторых случаях (особенно при высоких парциальных давлениях кислых компонентов и когда не требуется тонкая очистка газа) экономичнее использовать физические абсорбенты, которые по сравнению с химическими отличаются существенно более низкими затратами на регенерацию. Ограниченное применение этих абсорбентов обусловлено повышенной растворимостью углеводородов в них, что снижает качество получаемого кислого газа, направляемого обычно на установки получения серы. [c.14]

    В физических процессах извлечение кислых компонентов из газа происходит за счет физического растворения их в применяемом абсорбенте. При этом, чем выше парциальное давление извлекаемых компонентов, тем выше их растворимость. В отличие от алканоламинов, физические растворители одновременно с HjS и SOj извлекают из газа сераорганические примеси (меркаптаны, серооксид углерода и др.). [c.58]

    Употребляемый здесь термин эфиры относится к любому соединению, образовавшемуся путем замещения хотя бы одного водородного атома кислоты углеводородным радикалом. Углеводородные радикалы могут содержать и гетероатомы (серу, кислород или азот), зачастую находящиеся в виде примесей в сырье, например в виде серооксида углерода, карбаматов, тиокарбаматов, мер-каптидов и аминов. Будучи полярными соединениями, эфиры растворяются предпочтительно в кислотной фазе и, накапливаясь в кислоте, разбавляют и загрязняют ее. А являясь высокомолекулярными разбавителями, они снижают температуру кристаллизации жидкой кислотной фазы. [c.242]

    Катализаторы окисления сероводорода часто содержат диоксид титана, применяемый как в качестве активной фазы, так и в качестве носителя. Чистые титаноксидные катализаторы не отличаются высокой механической прочностью. Поэтому обычно в их состав вносятся специальные добавки, способствующие повышению прочности. Так для обессеривания кислого газа, содержащего сероводород, сероуглерод и серооксид углерода. [c.65]

    Выбор промышленной схемы процесса Клауса, в первую очередь, определяется содержанием сероводорода в кислых газах, подлежащих переработке, а также наличием в них посторонних компонентов, таких, как углеводороды и СО2. При содержании р роводорода в кислом газе более 50% используют классическую схему процесса. Выходящие с установок Клауса отходящие газы обычно одержат в зависимости от эффективности работы и качества обрабатываемого сырья 1-2% об. сероводорода, до 1% об. диоксида серы, до 0,4% об. серооксида углерода, до 0,3% об. сероуглерода, кайельную и паровую серу (1-8 г/м ), а также по 1-1,5% об. водорода и оксида углерода, до 15% об. углекислоты, около 30% об. водяных паров и азот. [c.239]

    СЕРООКСИД УГЛЕРОДА (оксисуль фид углерода, карбонисульфид) OS — ядовитый бесцветный газ, легко восп.па-меняется, без запаха, хорошо растворяется в сероуглероде, плохо — в воде, спирте, с воздухом образует взрывчатые смеси, горит на воздухе голубым пламенем. С. у. является примесью к природным и промышленным газам, от которой [c.225]

    К каким классам соединении относятся фосген O I 2 и серооксид углерода OS Отличаются ли по своему значению электрические моменты диполей молекул а) I 4 и O U б) СО 2, S, и OS  [c.289]

    Природные и нефтяные газы, содержащие диоксид углерода (СОз) и (или) сероводород (H2S) принято называть кислыми газами. Эти газы содержат также другие сернистые соединения, из которых можно указать серооксид углерода ( OS), сероуглерод ( S2), тиолы (СпНйп- —SH) и т. д. Газовые конденсаты, выделенные из природных и нефтяных газов, наряду с указанными, содержат также сульфиды (RSR), дисульфиды (R—S2—R) и другие сернистые соединения. [c.26]

    Основным недостатком МЭА является его необратимое взаимодействие с серооксидом углерода с образованием нереге-нерируемых соединений, что увеличивает его потери (рис. 2.5) [28]. [c.39]


Смотреть страницы где упоминается термин Серооксид углерода: [c.169]    [c.197]    [c.55]    [c.354]    [c.355]    [c.10]    [c.125]    [c.72]    [c.207]    [c.208]    [c.225]   
Справочник азотчика Издание 2 (1986) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Растворимость серооксида углерода в метаноле

Серооксид углерода в метаноле

Серооксид углерода свойства

Серооксид углерода теплота растворения диффузионная

Серооксид углерода удаление из газов



© 2022 chem21.info Реклама на сайте