Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная валентность проводимость

    Число и природа носителей т(жа в полупроводниках в большей степени зависят от их чистоты и характера примесей. Примеси принято делить на донорные и акцепторные, т, е. на отдающие и присоединяющие электроны. Донорные примеси увеличивают число электронов, а акцепторные — число дырок. Этот эффект примесей можно пояснить на примере германия, у которого имеется четыре валентных электрона. Если атом германия в его решетке заменить пятивалентным атомом мышьяка, то один электрон окажется лишним. Для его участия в проводимости необходимо, чтобы энергетический уровень атома примеси был расположен в запрещенной зоне вблизи зоны проводимости (непосредственно у ее нижнего края). Тогда каждый атом примеси будет ионизирован и электроны перейдут в зону проводимости. Число отрицательных носителей тока в полупроводнике с донорной примесью больше, чем число положительных носителей тем ие менее уравнение (5.45) остается справедливым, подобно тому как ионное произведение воды не изменяется при добавлении щелочи. Предположим, что один атом донорной примеси приходится ьа 10 атомов полупроводника. Считая все атомы примеси (иaпp iмep, мышьяка) полностью ионизированными, найдем, что в 1 см германия находится 4,5-10 при- [c.138]


    Если в кристалле имеются донорные или акцепторные примеси (иапример, изоморфно замещающие ионы в узлах кристаллической решетки), то в объеме и на поверхности полупроводника появляются избыточные электроны в зоне проводимости или избыточные дырки в валентной зоне и соответствующие локальные уровни энергии внутри запрещенной зоны. В зонной теории относительное количество электронов и дырок в полупроводнике характеризуется так называемым уровнем энергии Ферми (или просто уровнем Ферми), который имеет смысл химического потенциала электрона в полупроводнике. [c.454]

    В литературе имеются сведения [62] о связи валентности второго металлического элемента в окалине со скоростью окисления. Надо полагать, что при коррозионном процессе, при котором происходит как окисление, так и ионный обмен, проводимость защитной пленки имеет очень важное значение. Это подтверждается корреляцией между коррозионной стойкостью сплава и валентностью легирующих элементов. Элементы с большей валентностью (Мо) уменьшают проводимость пленки и повышают устойчивость сплава, элементы с меньшей валентностью (Ti, Zт), наоборот, увеличивают проводимость пленки, что должно уменьшать устойчивость ниобия в агрессивных кислотных средах. [c.73]

    Учащиеся часто смешивают термины степень окисления , заряд иона , валентность , так как не знают четкого определения понятий, неправильно понимают причину диссоциации и т. д. Поэтому необходимо сущность электролитической диссоциации объяснять исходя из теории химической связи, отмечая взаимодействие электролита с полярными молекулами воды, а электрическую проводимость — как следствие диссоциации электролитов на ионы. [c.237]

    Типичными дефектами решетки, вызывающими появление донорных примесных уровней в ионном кристалле М+К , могут быть замена иона металла М+ на ион металла большей валентности отсутствие иона металлоида на соответствующем месте внедрение нейтрального атома М в междоузлие. Акцепторные примесные уровни появляются при внедрении атома Н в междоузлие, отсутствии иона М+ на своем месте и пр. Соответственно, полупроводниковые кристаллы с избытком металла сверх стехиометрического количества или содержащие в качестве примеси металлы большей валентности обладают проводимостью -типа, а кристаллы со сверх стехиометрическим избытком металлоида или с внедренным металлом меньшей валентности-проводимостью р-типа. [c.27]


    Прямая зависимость электропроводности кварца от температуры указывает на ионный характер проводимости [4]. Электропроводность кристаллического кварца заметно отличается от электропроводности кварцевого стекла. Разница в величине проводимости, как считают [5], обусловлена тем, что при расплавлении кристаллического кварца часть примесных ионов, закрепленных главным образом в микродефектах, внедряется в разрывы 81 — 0-каркаса, где связывается сильными валентными связями. Это приводит к увеличению энергии активации носителей тока, что в свою очередь уменьшает величину электропроводности. [c.83]

    Механизм Вервея объясняет электрическую проводимость ферритов процессом перескока электронов от иона к иону. Валентность ионов при этом изменяется в соответствии с общей схемой Mef + + Мб2 + Ме - + + Ме< + >+. [c.113]

    Эквивалентная электрическая проводимость иона, умноженная на его валентность, равна ионной электрической проводимости М-+ = Z+1+, р- = гЛ . [c.185]

    Поглощение твердым веществом фотонов, сопровождающееся переходом валентных электронов в зону проводимости, является, в сущности, обратимым процессом внутримолекулярного окисления — восстановления. Например, при поглощении кванта света цинк-сульфидным кристаллофосфором, активированным окисью цинка, проходят мгновенные реакции окисления ионов серы и кислорода  [c.127]

    Разупорядочение ионных кристаллов происходит преимущественно в той подрешетке, ионы которой обладают меньшим радиусом, более низкой валентностью и меньшей деформируемостью. Разные типы разупорядоченности иногда могут переходить один в другой при повышении или понижении температуры. Так, РЫа ввиду большой поляризуемости ионов I при низких температурах обладает катионной проводимостью, в то время как анионная проводимость становится значительной только в области более высоких температур. [c.38]

    Введение в кристаллический кремний примесных атомов фосфора, имеющих по пять валентных электронов, также нарушает энергетическую однородность кристалла. В этих условиях каждый атом фосфора уже при сообщении ему энергии порядка 4,4 кДж/моль способен ионизироваться, перебрасывая один из своих электронов в зону проводимости и превращаясь в положительно заряженный ион. Аналогично ведут себя в кристаллах кремния и германия примесные атомы мышьяка, сурьмы и золота, обычно называемые донорными примесями. Для получения полупроводника с определенной концентрацией носителей (электронов или дырок) необходимо, чтобы количество собственных переносчиков тока в кристалле было примерно на два порядка ниже. [c.89]

    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]


    Потери одного электрона отрицательным ионом 7 " приводит к образованию свободной дырки, т. е. превращает в нейтральный атом Я. Свободные дырки обеспечивают дырочную проводимость кристалла. Дырка трактуется кгк свободная отрицательная валентность. [c.161]

    Одним из важнейших критериев правильности теории Аррениуса является совпадение значений степени диссоциации, найденных различными методами. В случае сильных электролитов достаточное совпадение наблюдается лишь при крайних разбавлениях, когда а близка к единице. В остальных случаях наблюдаются расхождения, значительно превышающие ошибки измерений, причем величина расхождения увеличивается с валентностью ионов. Данные, полученные из криоскопических измерений ( к), и данные по электрической проводимости (а ) существенно расходятся, что можно иллюстрировать следующим образом. Из сравнения уравнений (Х1У.50) и (XIV.41) имеем [c.379]

    Диэлектрики имеют удельное электрическое сопротивление в пределах от 10 до 10 Ом-м. Вид химической связи в них, в основном, ионный или ковалентный. Свободные носители заряда отсутствуют. Между валентной зоной и зоной проводимости находится широкая запрещенная зона. Наиболее распространенными диэлектриками являются полимерные материалы органической и неорганической природы соли, оксиды, стекло, полиэтилен, резина, многие текстильные материалы и др. [c.634]

    Силы релаксационного и электрофоретического торможения зависят от ионной силы раствора, природы растворителя и температуры. Зависимость эквивалентной электрической проводимости от концентрации для 1,1-валентного электролита выражается уравнением [c.146]

    Когда электрон связи превращается в электрон проводимости, на его месте остается вакантное место, или дырка . Соседний электрон связи может переместиться и заполнить это вакантное место тем самым дырка займет новое положение. На том месте, откуда удаляется валентный электрон, остается положительный ион, заряд которого по величине равен заряду электрона. Так как процесс перескока электронов повторяется неограниченно, происходит как бы перемещение дырки, что равносильно движению положительного заряда в кристалле. [c.94]

    Фосфор имеет 5 валентных электронов, т. е. на один больше, чем германий, и после образования связи с четырьмя соседними атомами Ge остается один лишний валентный электрон. Этот электрон становится свободным. При наложении электрического поля возникнет л-проводимость, так как в процессе ионизации не образуется свободных дырок, а положительно заряженные ионы фосфора прочно связаны в решетке германия. Такого рода примеси делают вещество л-полу-проводником. [c.95]

    Созданию электронной теории катализа на полупроводниках посвящены работы Ф. Ф. Волькенштейна. В этой теории рассматривается полупроводниковый катализатор, представляющий"собой идеальный кристалл, образованный ионами с оболочкой инертного газа. При отличной от абсолютного нуля температуре в зоне проводимости такого кристалла имеются электроны, обеспечивающие свободные валентности на его поверхности. Эти электроны участвуют в образовании связей адсорбирующихся частиц с поверхностью кристалла. Возможны три типа связи. 1. Слабая гомеополярная связь, обеспечиваемая валентным электроном одного из адсорбирующихся атомов, затягиваемым в зону проводимости кристалла. 2. Прочная гомеополярная связь, в которой кроме этого электрона участвует электрон кристалла, переходящий на локальный энергетический уровень, возникающий в запрещенной зоне кристалла в результате адсорбции. 3. Ионная связь, образующаяся при переходе валентного электрона адсорбированного атома в решетку кристалла. Наиболее реакционноспособны состояния со слабой связью, так как они характеризуются ненасыщенными валентностями. [c.279]

    Поглощение возбуждающего света происходит в основном веществе (рис. 14.4.83,.а, б). В результате возбуждеЕшя электрон ё из заполненной валентной зоны переходит в зону проводимости (рис. 14.4.83, а, б I), а на его месте в валентной зоне образуется дырка, обладающая свойствами положительного заряда е" и способная передвигаться по валентной зоне. Передвижение дырки осуществляется в результате быстрого последовательного обмена электронами между соседними ионами валентной зоны. Если уровень активатора располагается вблизи от валентной зоны, то электрон с активатора рекомбинирует с дьфкой. Она всплывает и локализуется на его уровне (рис. 14.4.83, а, б П). В результате рекомбинации электрона е, попавшего в зону проводимости, с дыркой активатора е (рис. 14.4.83, а, б 111) возникает кратковременное свечение. Однако электрон, оказавшийся на нижнем уровне зоны проводимости, может перейти на локальный уровень (безызлучательный переход рис. 14.4.83, б, IV). Переход с локального уровня непосредственно на невозбужденный уровень активатора невозможен. Чтобы попасть на уровень активатора, электрон сначала должен вернуться назад в зону проводимости, для чего ему необходимо сообщить дополнительно небольшую порцию энергии. Запасенная электронами на ловушках энергия (так называемая запасенная светосумма) может быть освобождена при нагревании кристаллофосфора или облучении его ИК-светом. При помощи энергии, сообщенной извне (тепловой или лучистой), захваченный ловушкой электрон возвращается в зону проводимости (рис. 14.4.83, б, V), а затем рекомбинирует с положительно заряженным ионом активатора (дыркой), вызывая его люминесценцию. Люминесценция, отве- [c.509]

    Атомы металла в междуузлиях могут диссоциировать на ионы валентности г, (Me o) и электроны в зоне проводимости окисла (ео). При полной диссоциации реакция в целом записывается следующим образом  [c.447]

    Во-вторых, необходимо учитывать электроосмос через пористые мембраны. Если между сторонами мембраны накладывается разность электрических потенциалов, то направленная миграция противоионов сообщает внутреннему раствору механический момент, и наблюдается массовый поток, увеличивающий скорость противоионов и уменьшающий скорость сопровождающих ионов это ведет к улучшению селективной проницаемости. Классический электроосмотический эффект в капиллярных трубках и пористых пробках известен уже около ста лет, но только недавно обнаружено, что этот эффект способствует электромиграции через гомогенные гели (Шмид [129]). Спиглер и Кориэлл [125] первые представили данные относительно величины эффекта. Эти авторы определили коэффициенты самодиффузии N3, 2п и Са в фенолсульфокислой смоле, а также эквивалентную проводимость смолы в тех же формах. Если ток переносят только противоионы (как в ионообменной мембране, свободной от диффундирующей соли), то коэффициент диффузии (О) и эквивалентная проводимость (Л) этих ионов (валентность г) должны быть связаны уравнением Нернста — Эйнштейна [c.167]

    При кондуктометрическом объемном анализе важную роль играет равнение электропроводностей растворов электролитов. Удельная прово-],имость какого-нибудь раствора зависит главным образом от концентрации рода ионов, участвующих в переносе электричества в растворе. Рааяич-)ые электролиты сравнивают по методу КоЬ1гаи5сЬ а на основании их <кв и валентной проводимости Л, вычисляемой из удельной про- одимости и разбавления V по формуле [c.449]

    В свою очередь в свободный узел — ионную вакансию может перейти соседний колеблющийся ион, если он обладает энергией, достаточной, чтобы преодолеть потенциальный барьер. На его месте снова образуется ионная вакансия. В результате перехода иона вакансия передвинулась из одного узла в другой. Кроме перемещения ионов из узлов в вакансии, возможно также перемещение ионов, находящихся между узлами. Как уже отмечалось, могут перемещаться лишь ионы, находящиеся на определенном энергетическом уровне. С повышением температуры возрастает число перемещений ионов в единицу времени, соответственно растет и концентрация дефектов решетки. Ионная электрическая проводимость зависит от числа дефектов, их подвижности и возрастает с повышением температуры (рис. 4). Электрическая проводимость твердых электролитов с ионными дефектами, особенно при относительно невысокой температуре, может быть увеличена введением в твердый электролит ионов, валентность которых отличается от валентности ионов твердого электролита. В качестве примера можно привести добавки соединений d + к Ag l, соединений Mg + к Lil, соединений Na+ или уз+ к СаРг. К этому же классу систем относятся соединения составов [c.38]

    Ионные кристаллы. В кристалле хлорида натрия (рис. 75, а) валентные электроны атомов Na (3s ) и l (3s 3p ) заполняют валентную энергетическую зону Зр. В представлении теории ионной связи это отвечает переходу электронов от атомов Na к атомам С и образованию ионов Na+ и СГ. Поскольку энергетическое различие между валентной Зр-зоной и свободной 35-зоной велико (Af 6 эВ), в обычных условиях Na l электронной проводимостью не обладает. [c.117]

    Волькенштейн и Киселев подчеркивают, что при рассмотрении системы адсорбент — адсорбат как единой квантовомеханической системы электронный переход означает лишь переход носителя тока (электрона, дырки) из одного энергетического состояния в другое без фиксации геометрии перехода. Однако прп сохранении иона-ми решетки своих индивидуальных свойств и отсутствии зон проводимости такая трактовка уже становится неприемлемой. В этом случае переход электронов от молекулы органического соединения к твердому катализатору может привести к обычной реакции, восстановления катиона переменной валентности, входяш его в состав катализатора, аналогично тому, как это происходит в гомогенном ката 1изе [c.28]

    Большинство катализаторов гидрокрекинга—полупроводники. В отличие от металлов (проводники), для которых переход электронов из валентной зоны в зону проводимости осуществляется легко, без преодоления энергетического барьера, в полупроводниках этот переход требует преодоления энергетического барьера, так называемой энергии акт1шации электропроводности Это объясняется те.м, что в металле атомы — нейтральг ые частицы, и электроны обобществлены. В окислах или сульфидах находятся ионы металлов, и для отрыва электронов требуется затрата энергии. По-этo iy окислы металлов (кроме окислов-изоляторов) начинают проводить ток только после нагревания. В любом окисле или сульфиде всегда сл ществуют пpи [e и пли нарушение стехнометрического состава (избыток. металла или избыток металлоида). [c.145]

    Вместе с тем адсорбированный атом может вызвать образование электронов проводимости. Пусть, например, атом натрия адсорбируется на поверхности хлористого натрия вблизи иона хлора. Для увеличения связи этот атом может отдать свой электрон одному из положительных ионов решетки. В результате в решетке возникнут нестехиомегричность и электронная проводимость. Введение бора в кремний приводит к образованию ненасыщенного атома кремния, так как валентность бора меньше валентности кремния. Свободная валентность соседнего с бором ненасыщенного атома кремния может захватывать электрон от других атомов кремния. В результате происходит миграция этой свободной валентности по решетке. Если такая валентность окажется на поверхности твердого тела, то она сможет связать адсорбированный атом или молекулу. Естественно, что вследствие образования такой связи молекула может активироваться. Электроны проводимости и дырки как адсорбционные и каталитические центры отличаются от обычных центров, так как они подвижны и их число зависит от температуры. [c.412]

    Как и в ковалентных кристаллах, валентные электроны взаимодействующих атомов полностью заполняют зону с более низкой энергией (валентная зона). Зона же проводимости, образованная внешними орбиталями второго атома, пуста, и переброс в нее электронов требует затраты энергии. В кристалле ЫаС1, например, все Зр-электро-ны атомов хлора и Зз-электроны атомов натрия заполняют зону с более низкой энергией, образованную взаимодействием Зр-орбиталей атомов хлора. Зона же, соответствующая Зз-орби-талям атомов натрия (зона проводимости), оказывается незаполненной, причем ширина запрещенной зоны достигает 7 эВ. Электронная проводимость большинства ионных кристаллов примерно на двадцать порядков ниже, чем у металлов. Известен ряд ионных кристаллов, ширина запрещенной зоны у которых не так велика и составляет порядка 2—3 эВ, как, например, у кристаллов СигО. Такие вещества при высоких температурах проявляют полупроводниковые свойства. [c.86]

    Наиболее полные и точные результаты, включая сведения о длинах связей и валентных углах, дает рентгеноструктурный анализ. Однако часто его применять не удается, так как либо не выращен монокристалл вещества, либо речь идет об изучении частицы, присутствующей в растворе и вдобавок в микроконцентрациях. В таких случаях обычно применяют совокупность других методов, результаты которых взаимно дополняют друг друга. Так, молекулярная электрическая проводимость аддукта РС15-КеС15 в ацетонитриле (выбран неводный растворитель во избежание гидролиза) соответствует электрической проводимости двух однозарядных ионов. На этом основании для данного соединения была предложена формула [Р С14]+ [КеС1б] , а ИК-спектр соединения дал добавочные сведения, говорящие в пользу такого строения. [c.27]

    Модель свободных, электронов. Она основывается на представлении о том, что валентные электроны в металлических кристаллах обобщаются (делокализируются). При этом, образуется ионный остов из катионов, помещенный в так.,называемую электронную жидкость . Энергия сцепления частиц в рамках этой модели определяется преобладанием энергии кулоновского взаимодействия между катионами и электронами над энергией отталкивания электронов за счет их кинетической энергии и катионов за счет ионного взаимод.ействия, причем последний вклад невелик. Эта теория достаточно хорошо описывает свойства щелочных металлов, качественно объясняет проводимость металлов и другие свойства. [c.129]

    Своеобразие химической связи в простых веществах-металлах, таким образом, состоит в отсутствии ковалентной составляющей, которая является главной компонентой связи в неметаллических простых веществах. С этой точки зрения кристаллическое строение металлов легче объяснить если учитывать главным образом ионное взаимодействие положительно зарял<енных ионов, т. е. атомов, потерявших свои валентные электроны (они перешли в зону проводимости). [c.253]


Смотреть страницы где упоминается термин Ионная валентность проводимость: [c.57]    [c.189]    [c.221]    [c.367]    [c.147]    [c.64]    [c.131]    [c.126]    [c.300]    [c.374]    [c.360]    [c.147]   
Химия (1978) -- [ c.304 , c.308 ]

Общая химия (1964) -- [ c.163 ]





ПОИСК





Смотрите так же термины и статьи:

Валентность ионная

Проводимость

Проводимость ионная



© 2020 chem21.info Реклама на сайте