Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральный инфракрасной области

    В практической спектрофотометрии измерения поглощения проводят в спектральной области, которую принято делить на 3 части ультрафиолетовая, видимая и инфракрасная области спектра. Единицей измерения длин волн в ультрафиолетовой части спектра в практической спектрофотометрии обычно служит нанометр (1 нм = 10 см). Ультрафиолетовая область спектра расположена в интервале длин волн 200— 400 нм, видимая область — в интервале длин волн 400—700 нм. Наконец, инфракрасная область спектра начинается примерно с 700 нм. В инфракрасной области спектра единицей измерения длин волн служит микрон (1 мк = 10- см). Очень часто инфракрасное излучение характеризуется волновым числом -V, у= 1Д (где X выражено в см), размерность V соответственно см Например, длина волны 2 лк соответствует волновому числу 5000 слг . Имеются специальные таблицы пересчета волновых чисел в длины волн. Наиболее доступная инфракрасная область расположена в интервале 0,7—20 мк, более длинноволновая область инфракрасного спектра малодоступна и практической спектрофотометрией пока не используется. [c.245]


    Спектры, расположенные в ультрафиолетовой, видимой и ближней инфракрасной областях длин волн, называются оптическими, и соответственно "методы анализа, основанные на использовании этих спектров, — оптическими. За единицу измерения длин волн спектральных линий в оптическом диапазоне принят нанометр (1 нм==10 м). [c.6]

    Спектральная чувствительность ФЭУ определяется типом используемого фотокатода и прозрачностью окна, сквозь которое свет попадает на фотокатод. В настоящее время выпускают достаточно широкий ассортимент ФЭУ, в совокупности полностью перекрывающих всю спектральную область, используемую в атомно-эмиссионном анализе (от вакуумного ультрафиолета до ближней инфракрасной области). [c.79]

    Кривая зависимости интенсивности поглощения от длины волны (или частоты) называется спектральной кривой поглощения, или, что менее точно, спектром поглощения. Спектр химически чистого вещества показывает высокую избирательность относительно поглощения излучения. Ни одна молекула не поглощает в интервале всего спектра электромагнитного излучения поглощение обычно сосредоточивается в сравнительно узких областях спектра, так что для быстрой характеристики вещества спектр полезно подразделять на ультрафиолетовую, видимую, инфракрасную и т. д. области (рис. 1.2). Даже в пределах этих областей поглощение весьма избирательно, как видно из ультрафиолетового, инфракрасного и протонного резонансного спектров бензола на рис. 1.4, а. Отдельные области поглощения, которые можно видеть на рисунке, называются полосами, хотя в протонной спектроскопии применяются термины сигнал или резонансный пик. Установлено, что бензол не обладает заметным поглощением между 300 ммк в ультрафиолетовой мкъ инфракрасной областях, т. е. диапазоне, который включает видимую область спектра. В самом деле, отсутствие видимого поглощения вполне очевидно, так как у бензола нет и следов видимой окраски. [c.14]

    В 1946 г. была опубликована статья Воге и Мэй [28], в которой сообщалось об измерениях равновесия реакции (IX). Применив спектральный метод анализа (исследование спектров поглощения в инфракрасной области), авторы имели возможность количественно определить в равновесных смесях содержание всех трех изомеров бутена с прямой цепью , т. е. бутена-1, г ыс-бутена 2 и транс-бутена-2. [c.309]

    Никитин В. И. Количественный спектральный анализ полимеров в инфракрасной области. Изб. АП СССР, сер. фпз., 1953, 17, № 5, 644—048. [c.657]


    Существующие спектральные методы анализа ароматических углеводородов (по сноктрам поглощения в ультрафиолетовой, средневолновой инфракрасно] областях и по спектрам комбинационного рассеяния) требуют примонепия сложной аппаратуры и связаны с затратой значительного времени. [c.559]

    Для спектрального анализа в инфракрасной области требуется относительно небольшая проба — 5 мкг в твердом виде и 50 мкг в растворе. Чувствительность повышается при использовании методов, основанных на преобразовании Фурье, при этом достаточно всего 0,05 мкг пробы. Этот метод анализа прекрасно дополняет данные, полученные на масс-спектрометре, и дает информацию о функциональных группах, а иногда и о структуре вещества. Имеется несколько приемов, позволяющих анализировать разделенные на хроматографе вещества с помощью ИК-спектрофотометра. Наиболее простым является концентрированно на таблетке КВч. Собранную с хроматографа и упаренную до 1—2 капель фракцию наносят микрошприцем на 5—10 мг порошка бромида калия, причем каждую новую порцию раствора выпаривают на таблетке, пропуская сухой ток инертного газа. [c.172]

    Область электромагнитного спектра, которая изучается при помощи спектральных приборов, основанных на оптическом методе разложения излучения, называется областью оптических спектров. Эти спектры простираются от дальней инфракрасной области, граничащей с микроволновой областью, до рентгеновского излучения (табл. 168). [c.275]

    Бор не ограничился объяснением уже известных свойств спектра водорода, но на основе своей теории предсказал существование и местоположение неизвестных в то время спектральных серий водорода, находящихся в ультрафиолетовой и инфракрасной областях спектра и связанных с переходом электрона на ближайшую к ядру орбиту и на орбиты, более удаленные от ядра, чем вторая. Все эти спектральные серии были впоследствии экспериментально обнаружены в замечательном согласии с расчетами Бора. [c.44]

    Изменениям состояний электронов, находящихся на внешнем электронном слое, представляющих наибольший интерес для химиков, соответствуют энергии в несколько электронвольт, что отвечает длинам волн видимого и ультрафиолетового излучения (в отдельных случаях непосредственно примыкающая к видимой области инфракрасного излучения, так называемая ближняя инфракрасная область). Спектральные исследования в этой области длин волн электромагнитного излучения называют электронной спектроскопией. Она чрезвычайно широко используется в химических исследованиях и будет более подробно рассмотрена в следующем параграфе. [c.149]

    Видимая область занимает узкий участок спектра примерно от 4000 до 7500 A. Электромагнитное излучение, соответствующее этой области, воспринимается глазом человека как видимый свет различных цветов в зависимости от длины волны. Видимое излучение занимает только маленький участок во всем электромагнитном спектре, но способность глаза непосредственно видеть только эти волны делает его главным для человека. Для спектрального анализа эта область также представляет значительный интерес, хотя и меньший, чем соседние ультрафиолетовая и ближняя инфракрасная области. [c.26]

    В видимой и ультрафиолетовой областях широко применяют как призменные, так и дифракционные спектральные аппараты. В инфракрасной области преимущественно используют призменные приборы. При использовании в этой области дифракционных решеток нельзя допускать перекрытия спектров разных порядков. Для этого можно поставить предварительную призму или светофильтр, которые выделяют только нужный участок спектра, а окончательное разложение излучения в спектр делает решетка. В области вакуумного ультрафиолета применяют главным образом приборы с вогнутыми дифракционными решетками, хотя в области до 1100 — КОО А небольшое применение находят также призменные приборы с оптикой из флюорита или фтористого лития. [c.99]

    Источник лучистой энергии, дающий излучение сплошного спектра в пределах нужной спектральной области. Для ультрафиолетовой области (210—350 нм) применяется водородная или дейтериевая лампа. В ближней ультрафиолетовой, видимой, а также ближней инфракрасной областях спектра (350—1000 нм) источником лучистой энергии служит лампа накаливания  [c.653]

    Электронные, колебательные и вращательные переходы энергетически не равноценны. Электронное возбуждение в молекуле требует наибольшей энергии соответствующие им спектральные линии появляются в видимой и ультрафиолетовой частях электромагнитного спектра. Самое низкочастотное излучение молекул соответствует вращательным переходам, так как энергетические уровни таких переходов близко расположены друг к другу. Это излучение обнаруживается в микроволновой и инфракрасной обл. .тях спектра. В дальней инфракрасной области оно перекрывается с излучением, сопровождаю-.щим колебательные переходы молекул. Спектральные линии этих переходов простираются и в ближнюю инфракрасную область. Приведем схему различных областей электромагнитного спектра. [c.109]


    Повышение спектральной чувствительности фотографической эмульсии достигается путем введения в ее состав оптических сенсибилизаторов — органических красителей. Применение их позволяет получить фотоматериалы, чувствительные к зеленому и желтому цвету (ортохроматические), ко всей видимой и красной частям спектра (панхроматические), а также к инфракрасной области (инфрахроматические). Для получения фотоматериалов, чувствительных к ультрафиолетовой области спектра, в состав эмульсии вводят вещества, способные флуоресцировать под действием ультрафиолетовых лучей (салицилат натрия). Для фотографирования области 185,0—210,0 нм используют пластинки, верхний слой желатины которых растворен в разбавленной азотной кислоте (шумановские пластинки). Для спектральных работ применяют специальные фотографические пластинки спектральные для научных целей , которые маркируют как СП-1, СП-2, СП-3. Особенностью этих пластинок является их высокая контрастность у и чувствительность к ультрафиолетовой части спектра. [c.679]

    Когда в спектре водорода были обнаружены дополнительные линии, как в видимой, так и в ультрафиолетовой и инфракрасных областях, уравнение Бальмера было модифицировано с тем, чтобы охватить все эти линии. Уравнение, применяемое в настоящее время для этой цели, называется уравнением Ридберга оно связывает величину, обратную длине волны спектральной линии (называемую волновым числом), с разностью величин, обратных квадратам двух целых чисел  [c.68]

    Обертонные колебания. Вода в жидком состоянии уже давно является объектом самых широких спектральных исследований. Несмотря на это, ее строение до сих пор остается окончательно не установленным [257, 274]. Спектры обертонных колебаний различных изотопных форм воды впервые были получены более 35 лет назад [251]. Тогда же было обнаружено, что число наблюдаемых полос в три с лишним раза меньше числа обертонов того же порядка, лежаш их в этой области спектра. Детальным и обстоятельным исследованиям спектры воды в ближней инфракрасной области подверглись только в последние пять — семь лет [326—333, 428, 430]. [c.131]

    Это выражение показывает, что в приближении, соответствующем описанию колебаний двухатомной молекулы гармоническим осциллятором, колебательные спектральные переходы (происходящие в инфракрасной области спектра) могут иметь лишь те энергии, которые являются целочисленными кратными величины /гуо. Понятно, что переходы с различными значениями 2 — 1 должны происходить при разных частотах. Именно поэтому основная частота обозначается символом Уо. Согласно приведенному выше определению силовой постоянной через частоту колебаний [выражение (4.5)], основную частоту колебаний можно записать как [c.84]

    Спектральная чувствительность ФЭУ определяется типом используемого фотокатода и прозрачностью окна, сквозь которое свет попадает на фотокатод. Для целей спектрального анализа наиболее важна высокая чувствительность ФЭУ в интервале длин волн 200-300 нм, где расположено большинство наиболее чувствительных спектральных линий. В настоящее время выпускают достаточно широкий ассортимент ФЭУ, в совокупности перекрывающих интервал длин волн от вакуумного ультрафиолета до ближней инфракрасной области. Однако при этом квантовая эффективность ФЭУ варьирует от 40 % в максимуме кривой спектральной чувствительности до 1 % на длинноволновой границе диапазона. [c.393]

Рис. 2.1. Спектральная зависимость мнимой части у. показателя преломления для вещества почвенно-эрозионного аэрозоля в инфракрасной области спектра. Рис. 2.1. <a href="/info/693670">Спектральная зависимость</a> <a href="/info/131018">мнимой части</a> у. <a href="/info/5513">показателя преломления</a> для вещества почвенно-эрозионного аэрозоля в <a href="/info/274621">инфракрасной области</a> спектра.
    Спектральный ход коэффициента поглощения х, так же как спектральный ход коэффициента /г, характеризуется ростом в близкой ультрафиолетовой области [159]. При исследовании поведения величины х в инфракрасной области спектра наблюдалось наличие минимума поглощения веществом частиц почвенно-эрозионного аэрозоля вблизи 1 мкм [221, 240]. Однако, начиная с длин волн около 1,5 мкм х значительно увеличивается, достигая максимума вблизи 10 мкм. Результаты измерений показывают [240], что для песчаной почвы характерно наличие максимума показателя поглощения (порядка 0,8) при 9,2 мкм, обусловленного влиянием полосы поглощения ЗЮг, и минимума при 1 мкм. Как видно из рис. 2.1, эти спектральные особенности и проявляются в зависимости х от к для аэрозольного вещества. [c.76]

    Преимуществом шкалы длин волн, которое способствует сохранению ее применения, является то, что в этой шкале дисперсия применяемых в инфракрасной области спектральных приборов значительно более постоянна по спектру. В спектралт.ных приборах измеряются длины волн , и для определения частот следует воспользоваться известным соотношением (1) [c.483]

    Спектральная характеристика сернисто-серебряных фотоэлементов (ФЭСС) резко отличается от спектральной чувствительности глаза. Главное отличие заключается в том, что сернисто-серебряные фотоэлементы очень чувствительны к инфракрасным лучам. Поэтому для использования этих фотоэлементов, которые, вообще говоря, более чувствительны, требуется ряд дополнительных условий, так как многие вещества, бесцветные при визуальном наблюдении, поглощают свет при наблюдении в фотоколориметре с сернисто-серебряным фотоэлементом. Так, например, вода оказывается окрашенной в этих условиях сильно поглощают свет в инфракрасной области спектра даже разбавленные растворы солей двухвалентной меди и растворы некоторых других веществ. [c.252]

    Колебательно-вращательный спектр называют также ин -фракрасным спектром. Такие спектры очень разнообразны, особенно в случае свободных молекул (в газах при уменьшенном давлении). Разрешающая способность обычного спектрального прибора слишком мала для разделения индивидуальных линий, вызванных вращательными Переходами. При повышении давления или при конденсировании фаз эти линии исчезают, так как продолжительность существования отдельного вращательного состояния настолько сильно изменяется. при соударениях молекул, что наблюдается уширение и перекрывание линий. Спектры в ближней инфракрасной области 1(Л от 1000 до 50 000 нм) обусловлены колебаниями атомов. При этом, различают колебания вдоль валентных связей атомов (валентные) и колебания с изменением валентных углов (деформационные). Колебания возникают, если поглощение электромагнитного излучения связано с изменением направления и величины дипольного момента молекул. Поэтому молекулы, состоящие, например, из двух атомов, не могут давать инфракрасные спектры. Симметричные валентные колебания молекул СОг также нельзя возбудить абсорбцией света. Отдельные группы атомов в молекулах больших размеров дают специфические полосы поглощения, которые практически не зависят от строения остальной части молекулы. Этот факт используЮ Т для идентификац,ии таких групп. В симметричных молекулах колебания одинаковых групп энергетически равноценны и поэтому вызывают появление одной полосы поглощения. По такому упрощению ИК-спектра можно сделать вывод [c.353]

    Широкое применение инструментальных методов анализа ни в какой мере не умаляет роли классической аналитической химии, которая, безусловно, является основой современной аналитической химии. Поэтому на первом этапе студенты знакомятся с классическими методами анализа и лишь с основами электрохимических, спектроскопических, хроматографических и некоторых других современных методов анализа (книги 1 и 2 Основы аналитической химии ). На втором этапе студенты углубленно изучают и практически осваивают в лаборатории аналитической. химии потенциометрический, кондуктометрический, хро-нокондуктометрический, высокочастотный, полярографический, амперометрический, кулонометрический, эмиссионный и абсорбционные методы спектрального анализа в видимой, ультрафиолетовой и инфракрасной областях спектра, а также радиометрические, хроматографические и другие методы анализа, и в том числе методы титрования иеводных растворов и методы анализа редких элементов, которые изложены в этой книге. [c.18]

    Отклонения, вызываемые не строго монохроматическим излучением. Закон Бугера — Ламберта — Бера точно справедлив только для монохроматического излучения. В спектрофотометрических измерениях применяют монохроматоры, т. е. спектральные аппараты, которые снабжены выходной щелью, вырезающей из спектра узкий участок. Но монохроматор может дать строго монохроматическое излучение только в том случае, если он снабжен бесконечно узкой щелью. В действительности реальные аппараты снабжены щелью какой-то определенной ширины, что вызывает некоторое отклонение от закона Бугера — Ламберта—Бера. Особое значение немонохроматичность излучения приобретает при измерениях в инфракрасной области спектра. [c.246]

    Следует отметить, что наиболее чувствительная линия не всегда оказы1 ается последней, так как на результат могут оказывать влияние такие факторы, как источник возбуждения, спектральная область. Например, последние линии серы, кислорода, азота и других газов расположены в акуумной ультрафиолетовой области спектра, а рубидия и цезия — в инфракрасной области спектра, что требует применения специальной аппаратуры. Для снижения предела обнаружения иногда следует применять вместо искрового источника спектра дуговой или наоборот. [c.649]

    Электронные, колебательные и вращательные переходы энергетически не равноценны. Электронное возбуждение в молекуле требует наибольшей энергии соответствующие им спектральные линии появляются в видимой и ультрафиолетовой частях электромагнитного сиектра. Самое низкочастотное излучение молекул соответствует вращательным переходам, так как энергетические уровни таких переходов близко расположены друг к другу. Это излучение обнаруживается в микроволновой и инфракрасной областях сиектра. В дальней инфракрасной области оно перекрывается с излучением, соировождающим [c.135]

    Выражение (3.39) впоследствии было обобщено Ридбергом и Ритцем для описания спектральных линий других атомов. Ритц, в частности, предположил, что, по-видимому, существуют другие серии водородных линий, для которых целая величина 1 принимает значения 1, 2, 3 и т. д. Последующие наблюдения спектральных линий в далекой ультрафиолетовой и инфракрасной областях спектра подтвердили это предположение. [c.45]

    О молекулах как о некоторых пространственных геометрических структурах убеждают нас не только тщательно разработанная теория, но и прямые эксперименты по днфракщш рентгеновских лучей на молекулярных кристаллах Сам факт получения достаточно четкой дифракционной картины возможен только тогда, когда имеется некоторое подобие устойчивой во времени дифракционной рещетки Спектры поглощений в инфракрасной области могут появиться только при наличии колебаний атомов около положения равновесия итд Используемые при рещении задач априорные сведения об упругости химических связей черпаются не только из спектральных, но и чисто химических экспериментов Например, давно уже были введены в науку понятия об одинарной, двойной и тройной связях между атомами углерода в углеводородах и было выяснено, что они обладают разной прочностью итд [c.98]

    НИЯ в видимой и ближней инфракрасной областях спектра (рис. 9.5). При добавлении эквимолярных количеств Ы-(2-пири-дилметнл) мочевины или N-(2-пиридилметил) карбамата происходит небольшое, но характерное изменение спектра в соответствии с образованием октаэдрических комплексов Ni(H) с обоими лигандами. Спектральные характеристики растворов никеля (П) и его комплекса с К-(2-пиридилметил) мочевиной при 400 нм не изменяются в интервале концентраций 0,019— [c.243]

    Превращение поглощенного излучения. До сих пор мы описывали поглощение излучения, не касаясь способа, каким молекула накапливает сообщенный ей избыток энергии. Оказывается, ответ на этот вопрос зависит от величины кванта энергии, поскольку большой и малый квант поглощаются совершенно по-разному. Кроме того, поглощенная энергия удерживается молекулой только в течение очень короткого промежутка времени. В конце этого периода, который измеряется интервалом от 10 до 10 сек в ультрафиолетовой и инфракрасной областях, избыток энергии удаляется путем лучеиспускания (флуоресценции или фосфоресценции), фотохимического разложения, посредством неизлучатель-ных процессов, которые переводят избыток энергии в тепло, а иногда — сочетанием этих механизмов. Фактически возбужденная молекула живет такое короткое время, что вероятность кумулятивного поглощения двух (или большего числа) квантов в сущности равна нулю спектральные кривые регистрируют поглощение молекулами только в их наиболее устойчивом, основном состоянии. [c.15]

    Абсорбционный спектральный анализ в ультрафиолетово видимой и инфракрасной областях спектра. Различают спектр фотометрический и фотоколориметрический методы. Спектроф тометрический метод анализа основан на измерении поглощен света (монохроматического излучения) определенной длины во. ны, которая соответствует максимуму кривой поглощения вещее ва. Фотоколориметрический метод анализа основан на измерен светопоглощения или определения спектра поглощения в пр) борах—фотоколориметрах в видимом участке спектра. [c.328]


Смотреть страницы где упоминается термин Спектральный инфракрасной области: [c.353]    [c.500]    [c.68]    [c.667]    [c.130]    [c.190]    [c.241]    [c.136]    [c.183]    [c.68]    [c.369]    [c.33]    [c.282]    [c.436]   
Основы аналитической химии Книга 2 (1961) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Спектральные области



© 2022 chem21.info Реклама на сайте