Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексные ионы и растворимост

    Одним из примечательных свойств окислительно-восстановительных реакций, отличающих их от большинства других химических реакций, является присущий им широкий диапазон значений констант равновесий. Для двухэлектронной реакции напряжению элемента в 6 В соответствует константа равновесия = 10 ° Это означает, что вероятность достаточно близкого совпадения восстановительных потенциалов двух полуреакций, при котором константа равновесия полной реакции принимала бы не слишком большое значение, крайне низка. Большинство окислительно-восстановительных реакций протекают практически до полного завершения либо вообще не осуществляются. Однако электрохимические методы можно использовать для изучения равновесий, произведений растворимости и образования комплексных ионов даже в таких случаях, когда один или другой компонент равновесной системы присутствует в количествах, слишком малых для обнаружения обычными аналитическими методами. [c.194]


    Растворимость иода в воде мала, поэтому при иодометрических определениях окислителей необходимо применять значительный избыток К1. Это способствует растворению выделенного при реакции иода, который с К1 образует нестойкий комплексный ион [1з]".  [c.400]

    Таким образом, растворимость электролита уменьшается от введения в раствор одноименных ионов. Исключением являются те случаи, когда происходит связывание одного нз находящихся в растворе ионов с вводимыми ионами в более сложные (комплексные) ионы (см. гл. XV n). [c.254]

    Вычислить растворимость Zn(0H)2 в 1 л 1 М NH3, если в растворе образуются только комплексные ионы 2п(МНз) +. [c.41]

    В растворе ионов циана. Подобным же образом иодид двухвалентной ртути растворим в присутствии избытка ионов иода, а гидрат окиси алюминия растворяется в растворах гидратов окисей щелочных металлов. В такого рода случаях, как легко обнаружить путем измерения чисел переноса, серебро, ртуть и другие катионы находятся в растворе в форме комплексных ионов. Растворимость мало растворимой соли можно увеличить путем добавления любого вещества, которое способно удалять простые ионы с образованием комплексных ионов, независимо от того, содержит оно общий ион или не содержит. Так, например, если прибавить ион циана или аммиак к мало растворимому соединению серебра, например к хлористому се- ребру, ионы серебра превращаются в. комплексные ионы Ад (СК)Г или Ад (ЫНз)2. В обоих случаях концентрация свободных ионов серебра понижается и произведение концентраций (активностей) ионов серебра и хлора становится меньше значения произведения растворимости поэтому для восстановления состояния, соответствующего насыщенному раствору, растворяется большее количество хлористого серебра. [c.242]

    При избытке общего иона растворимость осадка сначала уменьшается. Однако величины растворимости несколько превышают значения, рассчитанные на основании принципа произведения растворимости (см. рис. 3, пунктирная кривая). При большом избытке общего иона образование комплексных соединений становится доминирующим процессом и растворимость осадка повышается. В качестве примера приводим некоторые данные о растворимости хлористого серебра в растворах хлористого натрия различной концентрации  [c.46]

    Запись данных опыта. Описать наблюдаемые явления. Ответ тить на поставленные по ходу работы вопросы. Написать уравнения проделанных реакций, уравнение электролитической диссоциации комплексной соли меди и ее комплексного иона. Как влияет добавление (ЫН4)з5 на диссоциацию комплексного иона Сравнить по табл. 8 Приложения произведение растворимости соответствующих солей меди и объяснить, почему одна из них не выпадает в осадок из комплексного соединения. [c.126]


    Амфотерность (разд. 16.5)-способность некоторых плохо растворимых гидроксидов металлов растворяться как в кислой, так и в основной среде. Такая растворимость объясняется образованием комплексного иона в результате кислотно-ос-новной реакции. [c.137]

    Во внешнюю или внутреннюю координационную сферу комплексного соединения входит ион медн Объяснить действие на комплексное соединение оксалата аммония и сульфида аммоиия для этого написать уравнение диссоциации комплексного иона, найти в табл. 12 Приложения значение его константы нестойкости и в табл. 8 значения произведения растворимости соответствующих солей меди. [c.130]

    Равновесия при растворении и электродные потенциалы. Произведение растворимости. Образование комплексных ионов. [c.156]

    К небольшим порциям (1 мл) исходного раствора соли никеля добавьте по каплям такое же количества растворов сероводородной воды или сульфидов натрия или аммония. Что наблюдается Теми же реактивами подействуйте на небольшие порции полученного комплексного соединения никеля. Объясните результаты опытов, воспользовавшись представлениями о константе нестойкости комплексного иона, произведении растворимости сульфида никеля, константе диссоциации сероводорода и т. п. [c.407]

    В связи с такой особенностью ряда осадков необходимо отметить, что обычный метод вычисления растворимости при действии избытка общих ионов дает в этих случаях совершенно неправильный результат. Принцип произведения растворимости показывает, что при увеличении концентрации общих ионов они связывают противоположно заряженные ионы, переводят их в осадок, и поэтому концентрация последних уменьшается. Однако принцип произведения растворимости нельзя применять механически. В наиболее простых случаях при введении избытка общего иона наблюдается только образование новых частиц осадка. Тогда растворимость уменьшается при действии избытка общих ионов, как это рассматривалось ранее. Однако взаимодействие может иметь и другой характер. Если к насыщенному раствору йодной ртути прибавить избыток ионов йода, то концентрация ионов ртути в соответствии с принципом произведения растворимости будет уменьшаться. Однако ионы ртути не будут переходить в твердую фазу. Наоборот, ртуть даже из осадка переходит в раствор, так как в данных условиях взаимодействие ионов ртути и ионов йода приводит к образованию комплексного иона в растворе  [c.45]

    Растворимость иода в воде невелика (около 0,2 г/л или примерно 2-10 моль/л), поэтому его титрованные растворы готовят растворением точной навески свободного иода в концентрированном растворе К1. В растворе при этом образуется комплексный ион 1Г, что существенно увеличивает растворимость иода, не сказываясь практически на величине стандартного потенциала этой редокс-системы. Иногда титр раствора иода устанавливают по АзгОз. [c.277]

    Очевидно, маскировкой достигают той же цели, что и при осаждении мешающего иона в виде того или иного малорастворимого соединения, а именно настолько сильно понижают концентрацию этого иона, что он данным реактивом не осаждается и потому определению не мешает. Однако маскировкой эта цель достигается несравненно легче и быстрее, так как не нужно фильтровать раствор и промывать осадок все сводится лишь к прибавлению соот-ветсг вующего маскирующего агента . Посмотрим теперь, от чего зави ит возможность маскировки того или иного иона. Здесь придете прежде всего отметить влияние тех же двух факторов, на котоэые указывалось при рассмотрении вопроса о влиянии pH на полноту осаждения, а именно величины произведения растворимости осал<даемого соединения и константы ионизации продукта реакции, т. е. образующегося комплексного иона. [c.95]

    Вычислить растворимость Ni(0FI)2 в 1 л 0,05 М ЫНз, если в растворе образуются только комплексные ионы [c.41]

    К раствору комплексной соли [Ni(NH3)e] l2 прибавили а) раствор NaOH б) раствор сероводородной воды. Написать уравнения реакций. Исходя из значении произведений растворимости образующихся соединений никеля, решить, в каком случае произойдет более полное разрушение комплексного иона. [c.207]

    При взаимодействии аммиака с растворимыми солями меди (П) или ее малорастворимым гидроксидом образуется комплексный ион [ u(NH3)4] [c.180]

    Метод может быть реализован в варианте прямой кондукто-метрии или кондуктометрического титрования. Прямую кондук-тометрию используют для определения концентрации растворов сравнительно редко, поскольку регистрируемый аналитический сигнал не избирателен электропроводность раствора — величина аддитивная, определяемая наличием всех ионов в растворе. Прямые кондуктометрические измерения успешно используют, например, для оценки чистоты растворителя, определения общего солевого состава морских, речных и минеральных вод, а также для определения таких важных для аналитической химии величин, как константы диссоциации электролитов, состав и константы устойчивости комплексных соединений, растворимости малорастворимых электролитов. [c.104]


    Предсказывать характер изменения растворимости при введении того или иного вещества в раствор следует с большой осторожностью, так как избыток одного из ионов, добавление которого в начале способствовало осаждению, может привести к растворению уже образовавшегося осадка. Например, гидроксид цинка из-за его амфотерных свойств растворяется в избытке щелочи он растворяется также в растворе гидроксида аммония благодаря образованию комплексного иона. Но в любом случае растворение осадка объясняется тем, что в растворе произведение концентраций ионов становится меньше произведения растворимости. [c.247]

    Докажите при помощи крахмала наличие йода в растворе. Можно воспользоваться и другим приемом. Прибавьте в пробирку раствор сульфита натрия до обесцвечивания раствора и осадка (перемешивание ). Напишите уравнение этой реакции. Применять для этой цели раствор тиосульфата натрия нельзя, так как ион ЗгОз - образует с Си (I) хорошо растворимое соединение с комплексным ионом [Си (8203)2] [c.303]

    Концентрационные элементы широко используют в химической исследовательской практике для определения многих важных констант растворимости, произведения растворимости, константы нестойкости комплексного иона, ионного произведения воды, констант диссоциации кислот и оснований, для нахождения концентрации ионов и т. п. [c.337]

    Поскольку в растворе присутствуют также С1"-ионы, произведение растворимости А С1 окажется превышенным, и соль выпадет в осадок. Как известно, это явление используется при открытии Ай +- и С1--И0Н0В. Точно так же, если растворы комплексных солей меди с аммиаком, винной кислотой, или глицерином, имеющие темно-синюю окраску, подкислить, то окраска изменится на бледно-голубую окраску Си2+-катионов. Это свидетельствует о разрушении комплексных ионов под влиянием Н+-ионов. Следовательно, для осуществления маскировки нужно создавать достаточно высокое значение pH. [c.97]

    Индикатором в этом методе является Ре +-ион, который дает возможность обнаружить избыток NH4S N в растворе вследствие образования растворимых, окрашенных в красный цвет комплексных ионов железа (П1). [c.330]

    Как уже указывалось, иод очень плохо растворим в воде, поэтому его растворяют в концентрированном растворе К1, с которым он образует растворимый комплексный ион красно-бураго цвета [Ь]-. [c.403]

    Растворимые комплексные соединения образуются и при введении в раствор неодноименных ионов. Например, растворимость AgJ повышается при добавлении МагЗгОз, так как в результате образуется комплексный ион [c.515]

    Вторичная диссоциация характеризуется наличием равновесия между комплексной частицей, центральным ионом и лигаидами. В этом можно убедиться на основании следующих реакций. Если на раствор, содержащий комплексный ион [Ag(NHa)2]+, подействовать раствором какого-нибудь хлорида, то осадка не образуется, хотя из растворов обычных солей серебра при добавлении хлоридов выделяется осадок хлорида серебра. Очевидно, концентрация нонов серебра в аммиачном растворе слишком мала, чтобы при введении в него даже избытка хлорид-ионов можно было бы достигнуть величины произведения растворимости хлорида серебра (nPAg i = 1,8-10- ). Одпако после прибавления к раствору комплекса иодида калия выпадает осадок иодида серебра. Зто доказывает, что ионы серебра все же имеются в растворе. Как ии мала их концентрация, но она оказывается достаточной для образования осадка, так как произведение растворимости иодида серебра Agi составляет только т. е. значительно меньше, чем у хлорида [c.601]

    Какое должно быть соотношение значений константы нестойкости комплексных ионов платины и произведения-растворимости Ag l для прохождения реакции  [c.286]

    Многие хорошо растворимые комплексные соединения можно разрушить действием других электролитов или растворителя, если и результате этого образуются малорастворимые соединения или новые комплексные ионы, диссоциация которых меньше диссоциации комплексного иона исходного вещества. Например, прибавлением к раствору [Ag( N)2]- сульфида натрия можно полностью разрушить комплексное соединение, осаждая ион серебра в виде труднорастворимого осадка Ag2S. Здесь ионы серебра более толно удаляются из раствора, чем при связывании их в комплексный ион. [c.264]

    Ковалентная природа безводных галидов алюминия сказывается в их легкоплавкости, растворимости в органических веществах, способности к образованию димеров, полимеров и комплексных ионов. Последнее особенно характерно для фторида алюминия, взаимодействующего с фторидами таллов с образованием гексас )тороалюминатов  [c.255]

    Основные механизмы выведения тяжелых металлов из атмосферы -вымывание с атмосферньп<и осадками и осаждение иа подстилающую поверхность В осадках эти элементы присутствуют в растворимой (соли, комплексные ионы) и малорастворимой формах. Соединения ртуги в атмосферных осадках классифицируются на две фуппы Первая группа п]эедставлена ее элементной формой и органическими соединениями (например, Hg( Hз)2), а вторая - неорганическими производными (например, Hg2 l2). Основное количество ртути в осадках содержится в виде металлорганических соединений. Следует заметить, что в атмосферных осадках, как правило, преобладают водорастворимые формы тяжелых металлов, что, вероятно, обусловлено наличием в атмосфере кислых оксидов серы и азота, способствующих образованию растворимых соединений. По степени обогащения атмосферных осадков металлы располагаются в следующем порядке 7п > РЬ > Сё > N1 В работе [197] показано, что средние уровни свинца в осадках составляют 12 мкг/л, адя сельских районов (не подверженных урбанизации) 0,09 мкг/л для полярных областей и акваторий океанов 44 мкг/л для урбанизированных районов. [c.105]

    Расчеты растворимости осадков при условии связывания катиона в комплекс несколько затруднены, так как для многих комплексных ионов неизвестны точные величины констант диссоциации (констант нестойкости). Кроме того, комплексные ионы, содержащие несколько координированных групп (обычно 4 или 6), образуются и диссоциируют ступенчато, подобно многоосноБным кислотам. Наконец, состояние равновесия образования многих важных групп комплексных соединений, как цианиды, виннокислые и другие комплексы, зависит от кислотности раствора (см. 22). [c.43]

    Растворимость осадков вследствие образования комплекса с избытком осадителя. Ряд осадков характеризуется способностью реагировать с избытком осадителя, образуя растворимые комплексные соединения. Так, например, хорошо известны свойства йодистого висмута или йодной ртути. Эти веш,ества мало растворимы в воде для йодистого висмута растворимость составляет около г-молей в 1 л, для йодной ртути соответственно 2Л0 г-молей в 1 л. Таким образом, растворимость этих осадков близка к растворимости, например, сернокислого свинца. Несмотря на довольно малую растворимость, осадки типа В1Лз или HgJ2 нельзя применять в количественном анализе для отделения соответствующих катионов. Содержание определяемого иона, например Н + или В1 " + заранее (перед анализом), конечно, неизвестно. Поэтому нельзя прибавить точно необходимое количество осадителя, в данном случае ионов йода. При введении же избытка осадителя такие осадки растворяются с образованием комплексных ионов HgJз или В Л .  [c.45]

    Большой интерес представляют комплексные анионы, в состав которых включен металл. В первую очередь необходимо упомянуть о растворах цианидов. Цианиды образуются многими металшами медью, серебром, золотом, некоторы М1И платиноидам и, кадм Ием, цинком, оловом, никелем, кобальтом и др. Цианиды многих металлов обладают плохой, растворимостью в воде, но хорошо растворяются в избытке цианидов щалочных металлов с образованием соответствующих комплексных ионов. В качестве примера можно приве- [c.29]

    Объяснение амфотерности часто основывается на рассмотрении молекул воды, окружающих ион металла и связанных с ним льюисовыми кислотно-основными взаимодействиями (см. разд. 15.10). Например, ион АР (водн.) правильнее записывать в виде А1(Н20)б (водн.) это означает, что с ионом АР в водном растворе связано шесть молекул воды. Как указано в разд. 15.10, такой гидратированный ион является слабой кислотой. При добавлении сильного основания комплексный ион АЦНзО) последовательно теряет протоны и в конце концов образует нейтральный растворимый в воде комплекс А1(Н20)з(0Н)з. Это вещество растворяется с отщеплением еще одного протона, в результате чего в растворе образуется комплексный анион А1(Н20)2(0Н)4. Протекающие в указанном процессе реакции описываются следующими уравнениями  [c.132]

    Рассмотрим потенциометрическое титрование раствора А 1 0з раствором КСЫ. При добавлении КСМ вначале потенциал Ag-элeктpo-да изменяется медленно (рис. 99). Вблизи точки эквивалентности, отвечающей образованию нерастворимой соли А СЫ, концентрация ионов серебра резко убывает, что приводит к резкому изменению потенциала. Используя соотношение для произведения растворимости и уравнение Нернста, можно рассчитать потенциал электрода во время титрования и показать, что изменение потенциала в конечной точке будет происходить тем резче, чем меньше произведение растворимости осаждаемой соли. При дальнейшем прибавлении КСЫ обнаруживается еще один участок резкого изменения потенциала, отвечающий добавлению еще одного эквивалента КСМ. Это изменение потенциала соответствует переходу Ag N в комплексный ион Ag( N) . Изменение потенциала при комплексообразовании зависит от константы комплексообразования и может быть использовано для ее определения, в том числе и в условиях ступенчатого комплексообразования. Таким образом, потенциометрическое титрование позволяет осуществить количественное определение иона, состава комплексного соединения и константы комплексообразования. [c.229]

    Растворение Zn(0H)2 объясняется тем, что прн введении 1) раствор мо 1екул аммиака образуется комплексный ион, концентрация ионов цинка понижается и произведение концентраций [Zn +][OH становится меньше произведения растворимости. [c.255]


Смотреть страницы где упоминается термин Комплексные ионы и растворимост: [c.136]    [c.167]    [c.108]    [c.515]    [c.137]    [c.219]    [c.374]    [c.300]    [c.300]    [c.60]   
Введение в электрохимию (1951) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы комплексные

Комплексные ионы и растворимост устойчивости

Определение произведения растворимости осадка по кривым амперометрического титрования Определение констант нестойкости комплексных ионов методом амперометрического титрования

Определение состава и констант устойчивости комплексных ионов из минимума растворимости

Растворимость ионитов

Растворимость комплексные ионы

Растворимость комплексные ионы

Растворимость осадков в растворах, содержащих одноименные t ионы, которые не образуют с осадком комплексных соединений

Реакции с образованием комплексного иона . 20. Реакции, ведущие к образованию плохо растворимых соединений



© 2022 chem21.info Реклама на сайте