Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель, комплексы октаэдрические

    Но во многих октаэдрических комплексах кобальта(1П) лиганды (ионы или молекулы, присоединенные к Со) повышают его устойчивость к восстановлению. Никель в состоянии окисления + 2 образует октаэдрические и плоские квадратные комплексы. Многие соли N (11), а также его гидратированный катион имеют зеленую окраску. Плоские квадратные комплексы никеля обычно окрашены в красный или желтый цвет. [c.446]

    Можно получить также комплекс Ni (TRI) , никеля в октаэдрическом окружении (см. с 104) [c.29]


    Из данных табл. 13.3 следует, что энергия стабилизации максимальна у никеля и уменьшается в обе стороны от него, т. е. комплексы никеля должны быть прочнее, чем комплексы марганца, железа и кобальта, а также меди и цинка. Однако наиболее прочные комплексы образует медь (см. табл. 13.3). Это объясняется искажением октаэдрической структуры комплексов меди. Выводы из данны.х этой таблицы основаны на предположении, что все комплексы имеют строго октаэдрическую конфигурацию, т. е. лиганды расположены в вершинах октаэдра, совпадающих с электронными орбиталями и г, которые вытянуты вдоль осей координат. [c.254]

    Некоторые из этих элементов заслуживают особого рассмотрения. Двухвалентный никель образует октаэдрические комплексы с одними заместителями и квадратные комплексы с другими. Выше в этой главе ( 16.4) было показано, что комплекс с координационным числом шесть, образуемый цианидом двухвалентного [c.304]

    Для октаэдрических комплексов никеля (II) диаграмма Оргела (левая сторона рис. 10.11, ) демонстрирует три ожидаемых перехода -4,  [c.93]

    Теперь можно видеть, что очень небольшая величина Л может привести к огромному изотропному сдвигу. Читателю следует перевести величины изотропных сдвигов на рис. 12.1, выраженные в единицах частоты (при комнатной температуре), в единицы напряженности ноля, т. е. в эрстеды. Тождество ДЯ/Я = Ду/у, где у — фиксированная зондирующая частота, следует непосредственно из того, что для ядерных спинов И > = = дРЯ. Зависимость Ду от 1/7 должна иметь вид прямой линии, тангенс угла наклона которой для систем, подчиняющихся закону Кюри, пропорционален Л,. Для систем с орбитально вырожденным основным состоянием, таких, как октаэдрические комплексы никеля(П) и тетраэдрические комплексы кобальта(П), уравнения (12.7) и (12.8) справедливы. [c.170]

    Авторы работы [31] показали, что электронный спектр никеля в другом комплексе—N (N03)4 —характерен для шестикоординационного комплекса, а некоторые из нитратных групп могут бьггь бидентатными. Во многих случаях цвет комплекса иона переходного металла — плохой индикатор его структуры. Октаэдрические комплексы никеля(П) обычно дают три полосы поглощения в интервалах 8000—13 000, 15000—19000 и 25000—29000 см . Точное положение полос зависит от параметров Д и р. Коэффициенты поглощения, соответствующие этим полосам, обычно не превьппают 20. Как указьталось в разделе, посвященном расчетам Од, совпадение рассчитанной и экспфиментальной найденной частот средней полосы рассматривалось как доказательство существования комплекса О . [c.105]


    Третий подход, называемый методом отношения, был предложен [9] для разделения изотропного сдвига в октаэдрических комплексах ко-бальта(П) на скалярную и дипольную составляющие. Было сделано допущение, что отношения скалярных сдвигов аналогичных протонов в комплексе кобальта(П) те же самые, что и для протонов аналогичного комплекса никеля(П). Зная величины как этих отношений, так и отношений геометрических факторов, для нескольких протонов удается рассчитать анизотропный член, например в уравнении (12.23), и затем рассчитать Ду (дипольный) для каждого протона. Вообще некорректно предполагать, что октаэдрические комплексы никеля(П) и кобальта(П) характеризуются аналогичными картинами делокализации [10]. У высокоспинового комплекса кобальта(П) неспаренные электроны находятся [c.174]

    Составьте формулы октаэдрических комплексов никеля (II) со следующими лигандами Н2О, NH3, ОН, Р , N". Какие из них являются катионными, какие — анионными комплексами Приведите их названия. [c.77]

    Если исключить никель — никель связи, то может оказаться, что для отнесения комплекса N 1 к одному из этих двух классов достаточно определить его магнитную восприимчивость. Однако именно в этом и заключается один из недостатков метода валент ных связей. Рентгеноструктурное исследование некоторых пара магнитных комплексов N 4 показало, что вместо предсказанны.х тетраэдрических или октаэдрических структур они плоские и тетрагональные.  [c.278]

    Действительно, как видно из рис. 11.10, в области полосы поглощения, относимые к названным электронным переходам. [c.432]

    В ряду Ре—Со—N1 высшая устойчивая степень окисления падает. Наиболее устойчивой степенью окисления Со и N1 явл 1-ется +2, Ре — +3 (для кобальта и никеля степень окисления -ЬЗ характерна только для низкоспиновых комплексов). Все элементы УШБ группы, в том числе Ре, Со, N1, сильные комплексо-образователи. Для железа в основном характерны октаэдрические комплексы для никеля и особенно кобальта известны как октаэдрические, так и тетраэдрические комплексы. [c.540]

    Мономер-полимерные равновесия. Четырехкоординационные комплексы могут ассоциировать или полимеризоваться с образованием пяти- и шестикоординационных соединений. В некоторых случаях ассоциация протекает столь сильно, что мономеры с координационным числом 4 наблюдаются лишь при высоких температурах. В других случаях положение равновесия таково, что при температурах вблизи комнатной в растворах могут сосуществовать красные диамагнитные мономеры и зеленые или синие полимеры, соотношение которых зависит от температуры и концентрации. Показательным примером такой ситуации является ацетилацетонат (рис. 24.5). В результате того, что некоторые из атомов кислорода в этом соединении выступают как мостиковые, каждый из атомов никеля приобретает октаэдрическую координацию. Этот три-мер очень устойчив, и заметные количества мономера в некоорди-нирующемся растворителе обнаруживаются лишь при температурах около 200°С. Однако он легко расщепляется такими донорами, как вода или пиридин, образуя при этом шестикоординационные мономерные комплексы. [c.482]

    Из катионных комплексов никеля (И) устойчивы октаэдрические гексаакво- и гексаамминокомплексы, имеющие следующую электронную конфигурацию  [c.612]

    В сущности железо обладает не большей реакционной способностью, чем другие обсуждавшиеся выше переходные металлы. Однако, к сожалению, оксиды железа непрочно пристают к поверхности металлического железа, Ржавчина (оксид железа) отслаивается по мере образования и предоставляет возможность новой поверхности металла реагировать с окружающей средой. Содержащая хром нержавеющая сталь больше сопротивляется коррозии, но для защиты железа чаще используются покрытия из хрома, олова, никеля или красок. Соединения железа(П) обычно имеют зеленую окраску, а гидратированный ион железа(Ш), Ре(Н20) , окрашен в бледно-фиолетовый цвет. В состояниях окисления - - 2 и -Ь 3 железо образует октаэдрические комплексы с цнанидными ионами, Ре(СК) и Pe( N)g . Традиционные названия этих иоиов - ферроцианид и феррициа- ид. Согласно ссБрсмснной систематической номенклатуре, их называют гексацианоферрат 11) и гексацианоферрат(Ш). Номенклатура комплексных ионов излагается в гл. 20. [c.445]

    В октаэдрическом поле комплекс никеля(П) имеет орбитально невырожденное основное состояние поэтому никакого вклада от спин-орбитального взаимодействия ожидать не следует. Измеренные величины моментов варьируют в интервале 2,8 — 3,3 магнетона Бора, что очень близко к 2,83 магнетона Бора, которое получается, если учитывать чисто спиновый магнитный момент. Величины моментов октаэдрических комплексов несколько превышают значения моментов, имеющих чисто спиновый характер, из-за небольшого смешивания с мультип-летным возбужденным состоянием, в котором заметную роль играет [c.149]

    При общем сходстве свойств рассматриваемых элементов имеется определенная закономерность в их изменении от Ре.к N1. В ряду Ре, Со, N1 вследствие -сжатия уменьшаются радиусы ионов у Ре + г,- = 74, у 00 + г,- = 72, у N 2+ =69 пм. В связи с этим при переходе от Ре + к N1=+ ослабевают основные свойства гидроксидоь Э(0Н)2 и- возрастает устойчивость комплексов, что связано также с заполнением электронами -орбиталей с низкой энергией (гри октаэдрическом окружении лигандами). Рост заряда ядра ведет к более прочной связи электронов с ядром, поэтому для кобальта, и особенно для никеля, степень окисления +3 менее характерна, чем для желеча. Для железа известна степень окисления + 6 (КгРе04), которая не наблюдается у Со и N1. [c.560]


    На основании работ Б.К.Нефедова, М.В.Ландау и Л.Д.Коновальчико-ва и зарубежных данных с применением комплекса физико-химичес-ких методов установлено, что гидрообессеривающая активность АКМ и АНМ катализаторов корреспондирует с количеством никель (ко-бальт)молибденовых фаз, в которых молибден присутствует в октаэдрической конфигурации. Эти фазы легко восстанавливаются и сульфидируются, образуя фазу Ni( o)NoS, на ребрах и гранях которой происходят адсорбция и гидрогенолиз органических соединений серы и азота, а также связанных с носителем соединений оксисульфидного типа, ускорящих реакцию гидрообессеривания по гомолитическому механизму с разрывом электронной пары (например, RSH + Hj RH + + H2S). [c.175]

    Согласно современным представлениям (Шрауцер), эти реакции протекают на лабильном октаэдрическом комплексе, в центре которого находится ион никеля N 2+, а в вершинах располагаются группы, входящие в состав катализатора, и молекулы реагирующего ацетилена. [c.59]

    Приведите энергии расщепления -уровня никеля (II) для его октаэдрических комплексов [ЫЦОН2)б] , [М1(ЫНз)б] " ,  [c.113]

    Комплексы платины и ближайших ее соседей по периодической системе (никеля, родия, палладия и иридия) обладают плоской или октаэдрической конфигурацией и в отличие от других тетра- или гексакоординационных комплексообразователей характеризуются более высокой устойчивостью. Поэтому на их примере удается проследить влияние состава и строения комплекса на его химические и физико-химические свойства. Особенно это относится к производным платины. [c.103]

    Для никеля (II) характерно образование комплексных соединений, в которых он проявляет координационные числа 6 и 4. Комплексы шестикоординационного никеля построены по типу октаэдра. Так, рентгеноструктурные исследования А. Е. Порай-Кошица с сотрудниками показали, что NiPy4X2, где X — С1, Вг, N05, характеризуется октаэдрическим расположением аддендов около центрального иона N1 (II). Ацидогруппы находятся в т рансположении друг к другу. [c.154]

    Есть сведения о тетраэдрическом строении ряда комплексов N1 (II) с координационным числом 4. В частности, спектры поглощения тетрамминов никеля N1 (МНз)4X2 дают основания считать эти комплексы тетраэдрическими. Однако последние работы А. Е. Порай-Кошица показали, что в ряде случаев вместо тетраэдрической или плоской структуры осуществляются цепочечные структурные мотивы с октаэдрической конфигурацией вокруг никеля (И). Таковы например, Н1Ру2Х2, где X — С1, Вг, ЗСН и т. п. В растворе комплексы N1 (II), по-видимому, имеют октаэдрическое строение. Отдельные изомерные соединения двухвалентного никеля не получены, что связано с довольно высокой степенью ионогенности связей N1 (II) — адденд. Комплексы двухвалентного никеля довольно разнообразны. [c.154]

    Наиболее прочными комплексами Fe , Со и N1 являются цианистые. Они образуются при добавлении избытка цианидов к растворам солей Fe , Со , N1 . В лабораторной практике широко используют гексациаиоферрат(11) калия I (Fe( N)6) ЗН2О, называемый желтой кровяной солью. Кислота H4lFe( N)6) известна в свободном состоянии. Это бесцветное кристаллическое вещество, сильная кислота. Ион (Fe( N)e) имеет правильное октаэдрическое строение, rf(Fe- ) - 189 пм, rf( -N)-ll5 пм. В кристаллическом состоянии выделены также цианидкомплексы никеля(II) желтый Na] NI( N)4) и оранжевый K] NI( N>4 Ион Ni( N)4l имеет плоскую квадратную структуру, [c.538]

    В большинстве комплексных соединений элементы УП1Б группы имеют координационное число 6 (октаэдрическая форма) железо, кобальт н никель образуют также комплексы с координационным числом 4 (тетраэдрическая форма) палла-дин(П) и платина(П)—комплексы с тем же координационным числом, но с плоскоквадратной геометрией. [c.245]

    Геометрическая форма (симметрия) комплексного иона зависит и от природы лигандов, т. е. от степени их взаимодействия между собой. Для одинаковых лигандов, например в ацидокомп-лексах, можно предвидеть геометрию комплексных ионов. Как показал М. А. Порай-Кошиц, ацндокомплексы с ионами галогенов, ионами СЫ-, N5-, ЫОз, образованные ионами железа (II) и кобальта (III), имеют форму октаэдра, никель (II) с ионами СЫ дает тетраэдрический комплекс, а с остальными вышеуказанными лигандами октаэдрический, ион меди (И) образует октаэдр с лигандами СЫ и N0 , со всеми остальными получается октаэдр (или искаженный тетраэдр), палладий (II) и платина (II) образуют квадратные комплексы. [c.227]

    В соответствии с теорией кристаллического поля плоскоквадратные комплексы часто встречаются у ионов с электронной конфигурацией (никель, палладий, платина) и (медь). Если ион не имеет ЭСКП, то обычно легко образуются тетраэдрические комплексы (й1°, с1 , й( °) это происходит в комплексах железа (111), цинка (И), алюминия (111), кадмия (11), марганца (II). Относительно высокие координационные числа характерны для легких переходных металлов. Поэтому квадратные комплексы чаще встречаются в соединениях меди, палладия, платины, а ионы с конфигурацией с1°—Ф обычно дают октаэдрические комплексы. Тип химической связи в комплексах зависит от положения соответствующего иона в последовательности переходных металлов ионы металлов, расположенных в начале ряда, дают преимущественно ионные комплексы, а в конце — ковалентные [ионные комплексы образует, например, ион титана (И), а ковалентные — ионы никеля или меди (II)], Комплексы анионного типа (например, СоС ) обычно имеют меньшие координационные числа, чем катионные. [c.227]

    Комплексы никеля (рис. 24.14). Ионы никеля(П) образуют оранжевый комплекс [Ni( N)4] тетрацианоникколат-ион, имеющий плоскоквадратное строение. Никель образует также октаэдрические комплексы [Ni(H20)6] и [Ni(NH3)e] и тетраэдрический [Ni U] (рис. 24.15). [c.528]

    Установлено, что светлый сине-фиолетовый комплекс представляет собой гексамминникель(П)-ион Ni(NHз)6 это подтверждается тем, что таким же цветом обладают кристаллы №(ЫНз)бС12 и другие кристаллы, содержащие шесть молекул аммиака на один ион никеля, а также тем, что данные рентгеновских исследований подтвердили наличие в этих кристаллах октаэдрических комплексов, в которых вокруг иона никеля по углам правильного октаэдра располагаются шесть молекул аммиака. Структура кристалла Ы (ЫНз)бС12 приведена на рис. 16.2. [c.477]


Смотреть страницы где упоминается термин Никель, комплексы октаэдрические: [c.129]    [c.16]    [c.94]    [c.102]    [c.102]    [c.105]    [c.150]    [c.175]    [c.201]    [c.534]    [c.229]    [c.162]    [c.539]    [c.171]   
Успехи стереохимии (1961) -- [ c.260 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексы октаэдрические

Никеля комплексы



© 2022 chem21.info Реклама на сайте