Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

определение аминокислотной последовательности

    Об использовании экзопептидаз, таких как аминопептидаза и карбоксипептидаза, для определения аминокислотной последовательности вблизи N- и С-концов белков говорилось в разд. 23.3.4. Эндопептидазы являются протеолитическими ферментами, которые избирательно расщепляют пептидные связи в точках, удален ных от концов белковой молекулы. Эндопептидазы сильно различаются по своей специфичности. Обычно сами аминокислотные остатки с любой стороны расщепляющейся пептидной связи являются наиболее важными детерминантами специфичности протеолитических ферментов. Так, трипсин разрывает пептидные связи, в образовании которых участвует карбонильная группа остатков Arg или Lys схемы (25), (26) . [c.274]


    Масс-спектрометрический метод. Наряду с химическими и ферментативными методами для определения аминокислотной последовательности пептидов находят применение физико-химические методы, в частности масс-спектрометрия. [c.70]

    Для определения аминокислотной последовательности рибосомальный белок L32 был расщеплен на фрагменты двумя различными методами (А, Б) и для полученных фрагментов методом Эдмана была определена первичная структура. Для метода, А получены 12 фрагментов  [c.337]

    Б. X, сформировалась как самостоятельная область во 2-й пол. 20 а на стыке биохимии и орг, химии, на основе традиционной химии прир. соединений. Ее развитие связано с именами Л. Полинга (открытие а-спирали как одного из главньп элементов пространста структуры полипептидной цепи в белках), А. Тодда (выяснение хим. строения нуклеотидов и первый синтез динуклеотида), Ф. Сенгера (разработка метода определения аминокислотной последовательности в белках и расшифровка с его помощью структуры инсулина), Дю Виньо (хим. синтез биологически активного гормона окситоцина), Д, Бартона и В. Прелога (конформационный анализ), Р. Вудворда (полный хим. синтез мн. сложных прир. соединений, в т.ч. резерпина, хлорофилла, витамина В] ) и др. крупных ученых. [c.288]

    В период между 1925 — 1930 гг. Сведберг с помощью ультрацентрифугирования произвел определение молекулярных масс различных белков. Одновременно применение других аналитических методов, как, например, электрофореза и различных видов хроматографии, привело к развитию аналитической белковой химии. В 1951 — 1956 гг. Сенгер [20, 21] установил аминокислотную последовательность инсулина. Использованные при этом методы легли в основу систематического определения первичной структуры многих белков. Созданный Эдманом в 1966 г. секвенатор и применение масс-спектрометрии в сочетании с ЭВМ как средством регистрации, обработки и оценки масс-спектрометрических данных привели к тому, что к настоящему времени опубликовано более 15 ООО работ, посвященных определению аминокислотных последовательностей, и установлены первичные структуры более чем для 1000 белков. [c.343]

    Информация, необходимая для построения определенной аминокислотной последовательности, содержится в дезоксирибонуклеиновой кислоте (ДНК). Молекула ДНК является полинуклеотидом, образованным основаниями аденином (А), гуанином (G), цитозином (С), тимином (Т), остатками фосфорной кислоты и 2-дезоксирибозой в качестве углеводного компонента. Все ДНК построены как регулярные двойные спирали, структура которых стабилизирована водородными связями между комплементарными парами оснований А — Т и О — С. В ДНК каждые три следующих один за другим нуклеотида (триплетный код) кодируют одну аминокислоту (189 — 192]. Для 20 протеиногенных аминокислот существуют 64 кодовые единицы (кодона), из которых по 6 приходится на аминокислоты Leu, [c.391]


    Определение нуклеотидной последовательности ДНК может стать мощным методом определения аминокислотной последовательности белков. Генетический код является вырожденным в том смысле, что большая часть аминокислот описывается более чем одним кодоном. Поэтому нельзя установить нуклеотидную последовательность по коллинеарной аминокислотной последовательности. Однако удается извлечь информацию о неизвестной аминокислотной последовательности белка, анализируя исходную нуклеотидную последовательность. Реализация этого косвенного метода наталкивается на серьезное препятствие экспериментальные ошибки, отвечающие делециям н вставкам отдельных нуклеотидов в полинуклеотидной последовательности, настолько нарушают порядок нуклеотидных триплетов, что правильное определение аминокислот оказывается пока не возможным. [c.18]

    Определение, аминокислотной последовательности с помощью масс-спектрометрии 278 [c.7]

    ОПРЕДЕЛЕНИЕ АМИНОКИСЛОТНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ С ПОМОЩЬЮ МАСС-СПЕКТРОМЕТРИИ [c.278]

    На основе приведенной схемы расщепления под действием Ф. был разработан прибор для автоматического определения аминокислотной последовательности в белках и пептидах (41. [c.492]

    Другой вариант автоматического определения аминокислотной последовательности коротких пептидов, основанный на ковалентном присоединении их к нерастворимому носителю, предложен Р. Ларсеном. Реакционным сосудом в твердофазном секвенаторе служит хроматографическая колонка, с носителем которой ковалентно связан исследуемый пептид. Через колонку последовательно пропускаются необходимые реагенты и растворители. Присоединение пептида к носителю является определяющей стадией в процессе. Для этой цели широко применяются матрицы на основе [c.63]

    Для определения аминокислотной последовательности Б. прежде всего разделяют его полипептидные цепи (если макромолекула состоит из неск. цепей). Затем определяют аминокислотный состав цепей, N- и С-концевые аминокислотные остатки и аминокислотные последовательности. Полипептидные цепи подвергают спецнфич. расщеплению протеолитич. ферментами или хим. реагентами. Смесь образовавшихся фрагментов разделяют и для каждого из них определяют аминокислотный состав и аминокислотную последовательность. При необходимости крупные фрагменты дополнительно расщепляют к.-л. способом на более мелкие. Порядок расположения фрагментов выясняют путем расщепления молекулы R по др. связям и анализа образующихся при этом перекрывающихся фрагментов. [c.250]

    При определении аминокислотной последовательности пептидов находит применение также масс<пектрометрия. Б этом случае используется способность ионизнров. молекул пептидов распадаться по т. наз. аминокислотному типу фрагментации, заключающемуся в разрыве СО—NH или Са—СО связей  [c.252]

    ГЕН (от греч. genos-род, происхождение), участок молекулы ДНК (в нек-рых случаях РНК), в к-ром закодирована информация о биосинтезе одной полипептидной цепи с определенной аминокислотной последовательностью. Г.-единица наследств, материала, обеспечивающая форкт-рование к.-л. признака организма и его передачу в ряду поколений. Контролируют все клеточные процессы на молекулярном уровне, обеспечивая биосинтез белков, в первую очередь ферментов. Если белок состоит из более чем одной полипептидной цепи, синтез каждой из них контролируется самостоятельным Г. [c.517]

    Значительным успехам в понимании детального строения антител способствовал тот факт, что у больных с опухолями лимфатической системы (например, при опухоли костного мозга — множественной миеломе) была обнаружена секреция огромных количеств гомогенных иммуноглобулинов или их фрагментов. В скором времени подобные опухоли были найдены у мышей, которые стали источником экспериментального материала. Оказалось, что белки Бенс-Джонса, секретируемые в мочу у больных миеломой, представляют собой легкие цеп имлгуноглобулннов. Определение аминокислотной последовательности показало, чго у каждого больного белок Бенс-Джонса гомогенен, однако не было обнаружено даже двух больных, секретирующих один л тот же белок. Позже были получены также интактные гомогенные миеломные глобулины и макроглобулины (IgM). [c.382]

    Определение аминокислотной последовательности иммуноглобулинов привело к неожиданныхМ результатахМ. Одни участки молекул разных антител имеют сильно различающиеся последовательности (вариабельные участки), тогда как последовательность других участков у них почти не меняется (константные участки). Молекулу антитела можно в соответствии с этими данными разделить на участки, или домены. Вариабельные участки, у Ы-концов легких и тяжелых цепей, принято обозначать соответственно Уь и Ун, а константные участки — Сь и Сн- При исследовании Сн-участков было обнаружено, что приблизительно через 110 остатков большая часть аминокислотной последовательности повторяется. Константный участок тяжелой цепи молекулы IgG состоит из трех таких доменов (Сн1, Сн2 и СнЗ), аминокислотная последовательность которых весьма сходна. В молекуле IgM имеется еще и четвертый Сн-домен. Эти данные позволяют предполагать, что в процессе эволюционного развития иммуноглобулинов происходила последовательная дупликация короткого гена, кодирующего синтез последовательности приблизительно из 110 аминокислот. [c.383]


    Единственная установленная функция витамина К — это его связь со свертыванием крови. Как удалось проследить, недостаточность витамина К приводит к понижению содержания протромбина (рис. 6-16), некоторых факторов свертывания крови (факторов VII, IX и X) н одного плазматического белка, функция которого пока еще не установлена. В 1972 г. было обнаружено, что дефектный протромбин, образующийся в печени в отсутствие витамина К, не способен связывать ионы кальция, необходимые для последующего связывания протромбина с фосфолипидами и активации его в тромбин. Основываясь на этих сведениях, удалось локализовать структурные различия между нормальным и дефектным белком в М-концевом участке этого гликопротеида, содержащего 560 остатков . Из триптических гидролизатов нормального и дефектного протромбина были выделены пептиды, различающиеся по электрофоретической подвижности. Тщательный химический анализ в сочетании с изучением ЯМР-спектров показал, что в нормальном протромбине остатки в положениях 7, 8, 15, 17,20, 21, 26, 27, 30 и 33, которые при определении аминокислотной последовательности были все идентифнцнро-ваны как глутаминовая кислота, в действительности являются остатками карбокснглутамата. [c.389]

    Креатинин, образующийся в мышечной ткани, представляет собой 2-имнно-З-метилгидантоин. Стоит упомянуть и тиогидантоин, который образуется при определении аминокислотных последовательностей реакцией с изотиоцианатами (ср. разд. 3.6.1.2.2). [c.74]

    Методы выделения, очистки и аналитические характеристики пептидов описаны подробно в разд. 3.3. Изучение связи между строением и биологической функцией пептидов ведет к познаванию молекулярного механизма их действия. При этом главное внимание обращается на выяснение активного центра и определение аминокислотной последовательности, которая ответственна за рецепторное связывание, транспорт и иммунологическое поведение. Большой практический интерес имеет также модификация природных пептидов для пролонгирования их действия и расширения практического применения. Такого рода исследования можно проводить только тогда, когда соответствующий природный пептид имеется в достаточном количестве. Необходимые для изучения пептиды можно получать путем частичного ферментативного расщепления экзопептидазами или эндопептидазами или же с помощью специфических химических методов расщепления (бромцианом или Ы-бромсукцинимидом) можно также использовать замещение, элиминирование или превращение функциональных групп соответствующих пептидов. Возможности модификации природных пептидов ограничены тем, что часто исследователь располагает лишь нанограммо-выми количествами этих веществ. [c.90]

    Эти производные под действием ЭУ подвергаются "аминной" фрагментации (а-разрыв), что обусловливает высокую эффективность определения аминокислотной последовательности в исходных олигопептидах. [c.185]

    Аналогичным путем было проведено исследование Са -связывающих белков Аргосом [3881, который показал, что предсказания могут способствовать определению аминокислотной последовательности, особенно в сомнительных случаях. Кроме того, с помощью предсказаний он попытался определить положение Са- -связываю-щих центров в ацилпереносящем белке синтетазы жирных кислот Е.соИ. а также в белках кровесвертывающего каскада. [c.155]

    Хорошо известный метод Эдмана для определения аминокислотной последовательности в пептидах основан на образовании тиогидантоинов (12) за счет концевой аминокислоты при действии на пептиды соответствующего RN = = S. Масс-спектры таких тиогидантоинов достаточно характеристичны и облегчают задачу идентификации отщепленной аминокислоты [507]. Масс-спектры фенилтиогидантоинов (12, R = 6Hs), например, всегда содержат интенсивные пики М+ и пики ионов [СбН5]+ и [ eH5N = = S] + - (m/z 135). Если в (12) К >СНз, то из М+ легко отщепляется молекула (R —Н). [c.291]

    Вслед за первыми работами Сэнгера в последние годы удалось расшифровать первичную структуру многих полипептидов и белков. После определения аминокислотной последовательности инсулина были расшифрованы последовательности рибонуклеазы, полипептида из вируса табачной мозаики, нескольких препаратов цитохрома с, различных цепей гемоглобина, ингибитора трипсина, химо-трипсиногена и химотрипсина, трипсина, глицеральдегидфосфат-дегидрогеназы и т. д. Вместе с последовательностями некоторых пептидных гормонов эти данные вошли в Атлас структуры и аминокислотной последовательности белков , который впервые был опубликован в 1966 г. и затем неоднократно переиздавался  [c.40]

    Помимо хроматографии нативных белков, для решения ряда задач необходимо проводить хроматографическое разделение модифицированных (восстановленных, окисленных, карбоксимети-лированных, алкилированных и т. д.) белковых производных. Прежде всего это необходимо при определении аминокислотной последовательности тех белков, которые состоят из нескольких полипептидных цепей различной структуры. В этих случаях, прежде чем приступить к анализу последовательности аминокислот в полипептидных цепях, необходимо разделить последние. [c.207]

    Определение аминокислотной последовательности представляет собой более сложную зддачу, решение которой требует выполнения нескольких этапов как правило, их реализация осуществляется параллельно. [c.56]

    В полипептидной цепи белка с одной стороны расположен аминокислотный остаток, несуший свободную а-аминогруппу (амино-или N-концевой остаток), а с другой—остаток со свободной а-карбоксильной группой (карбоксильный, или С-концевой остаток). Аналиэ концевых остатков играет важную роль в процессе определения аминокислотной последовательности белка. На первом этапе исследования он дает возможность оценить число полипептидных цепей, составляющих молекулу белка, и степень гомогенности исследуемого препарата. На последующих этапах с помощью анализа N-концевых аминокислотных оста ков осуществляется контроль за процессом разделения пептидных фрагментов. [c.37]

    Имеется ряд методов, с помощью которых можно определять как N-концевой аминокислотный остаток, так и N-концевую аминокислотную последовательность. К ним относятся деградация по методу Эдмана и ферме ггативный гидролиз аминопептида-зами. Эти методы будут подробно рассмотрены в разделе, посвященном определению аминокислотной последовательности пептидов. [c.38]

    Существует группа ферментов, которые при гидролизе пептидов и белков отщепляют N- или С-концевые дипептидные фрагменты. К ним относятся катепсин С, или дипептидиламинопептидаза I (ДАП 1), и катепсин В. или дипептидилкарбоксипептидаэа. Процесс определения аминокислотной последовательности с помощью этих ферментов состоит из нескольких стадий I) гидролиз исследуемого соединения соответствующей дипептидазой, 2) разделение и идентификация отщепленных пептидов, 3) определение порядка расположения дипептидов в полипептидной цепи исследуемой молекулы. [c.69]

Рис. 26. Принцип масс спектрпметриче СКОРО метода определении аминокислотной последовательности пептидов. Рис. 26. <a href="/info/766700">Принцип масс</a> спектрпметриче СКОРО <a href="/info/1536929">метода определении аминокислотной</a> последовательности пептидов.
    Впервые последовательность нуклеиновой кислоты аланиновой тРНК нз дрожжей была расшифрована в 1965 г. Р. Холли. Для установления структуры использовалась методология, аналогичная разработанной Ф. Сенгером для определения аминокислотной последовательности белков. Усовершенствование этого подхода привело н 1975 г. к расшифровке последовательности целого генома — РНК фага MS-2. В настоящее время известны структуры многих тРНК, 5S и 5.8S рибосомных РНК, а также структуры больших рРНК (16S, 23S, I8S и 28S) нз ряда организмов. [c.308]


Библиография для определение аминокислотной последовательности: [c.469]    [c.32]   
Смотреть страницы где упоминается термин определение аминокислотной последовательности: [c.144]    [c.427]    [c.527]    [c.287]    [c.29]    [c.268]    [c.468]    [c.322]    [c.325]    [c.105]    [c.377]    [c.57]    [c.60]    [c.62]    [c.81]   
Основы биохимии Т 1,2,3 (1985) -- [ c.146 , c.147 , c.148 , c.149 , c.150 , c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные последовательности



© 2022 chem21.info Реклама на сайте