Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ вещества химический

    Современным методом расчета и анализа процессов химической технологии является метод математического моделирования. Составная часть метода математического моделирования — установление адекватности математической модели изучаемому объекту. Адекватность может быть установлена с использованием статистико-вероятностных методов, позволяющих определить значения коэффициентов математической модели или действительного времени пребывания частиц потока, переносящих вещество или энергию. Поэтому применение таких приемов, как использование метода моментов, стало мощным средством математической оценки соответствия модели и объекта. [c.4]


    ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ (ИКС)—раздел спектроскопии, изучающий поглощения в длинноволновой части спектра (от 750 им до 0,1 мм). Ири помощи И. с. можно установить наличие различных атомных группировок в молекулах веществ, химическое строение молекул, характер их движения, взаимодействие между ними. И. с. используют в качественном (изучение количества и положений пиков в спектре) и количественном анализах (установление интенсивности пиков). Приборы для И. с.— инфракрасные спектрофотометры. [c.109]

    При исследовании кинетики реакций весьма важен вопрос о выборе контролируемого параметра. В простых газо-жидкостных процессах, в которых хорошо изучены направления химических превращений (например, реакции гидрирования непредельных соединений или восстановления нитросоединений водородом), контролируемым параметром может служить давление. Процесс в этом случав проводят статически в изохорических условиях, а скорости реакций измеряют по скорости изменения давления в системе. Математическая обработка полученных результатов достаточно проста. Для сравнительно простых реакций можно применять адиабатический метод исследования кинетики [4—6], когда контролируемым параметром является только температура. Метод основан на определении скорости разогрева (охлаждения) адиабатического реактора и применим для сильно экзотермических (или эндотермических) реакций. Для его использования нужно знать тепловые эффекты реакций и теплоемкости реагентов и продуктов. Надо, однако, иметь в виду, что при применении чисто адиабатического метода всегда есть опасность непредвиденного изменения направления реакции по мере повышения температуры, что сразу затрудняет расшифровку полученных данных. Гораздо большую перспективу имеет применение для исследования каталитических процессов метода неизотермического эксперимента, где наряду с анализом веществ производится замер профиля температуры по длине слоя катализатора или по ходу опыта. [c.403]

    Как уже указывалось, идентификация, т. е. доказательство строения выделенных из смеси хроматографируемых веществ, может производиться вне хроматографической установки каким-либо химическим или физическим методом. Главная трудность в успешном выполнении такого анализа состоит в том, что количество вводимой для хроматографического разделения смеси обычно очень мало. Следовательно, и количества отбираемых для анализа веществ также очень малы. Поэтому из всех возможных методов анализа получили распространение лишь те, которые, обладая высокой чувствительностью, требуют ничтожно малых количеств вещества. Такими методами являются инфракрасная спектроскопия (ИК-спектроскопия) и масс-спектроскопия. [c.121]


    Закон постоянства состава. Был открыт французским химиком Ж. Прустом после тщательного анализа многочисленных химических соединений. Закон можно сформулировать следующим образом всякое чистое вещество (химическое соединение), каким бы путем оно ни было получено, имеет строго определенный и постоянный состав (качественный и количественный). Например, вода может быть получена в результате следующих химических реакций  [c.13]

    Контроль за хроматографическим разделением анализируемых смесей можно осуществлять различными способами. Если разделяемые вещества окрашены, то анализ веществ можно проводить непосредственно (визуально) на колонке в слое адсорбента появляются окрашенные зоны (слои). Если же вещества не-окрашены, но люминесцируют (при освещении их УФ излучением) или вызывают флюоресценцию некоторых индикаторов, вводимых предварительно в адсорбент, то идентификация таких веществ также не представляет особого затруднения. Можно регистрировать разделяемые вещества непосредственно после выхода из колонки. Например, для веществ, обладающих кислыми свойствами, можно использовать цветную реак- цию с индикатором. Иногда проводят анализ каждой порции элюата с помощью различных физико-химических методов (спектрофотометрического, потенциометрического, рефрактометрического и др.). [c.158]

    Исключительно важно применение лазерного излучения для качественного и количественного анализа веществ, для исследования механизмов химических реакций. [c.203]

    Эффективным способом воздействия на вещество является использование лазерного излучения. Важным его свойством является излучение мощных потоков световой энергии в узких интервалах, что позволяет осуществлять реакции избирательно. Используя лазерное излучение определенной длины волны, можно направить в нужном направлении химический процесс. Лазерное излучение может быть с успехом использовано для инициирования высокотемпературных и плазмохимических процессов, испарения и разложения нелетучих веществ, качественного и количественного анализа веществ, исследования механизмов химических реакций и т. д. [c.150]

    Для качественного анализа необходимо, чтобы параметр удерживания был однозначно связан с сорбционными свойствами исследуемого вещества. Для количественного анализа требуется, чтобы зарегистрированные пики были достаточно хорошо отделены друг от друга и измеряемые параметры этих пиков (площадь 5 или высота Н) адекватно характеризовали содержание индивидуальных веществ в анализируемой смеси. При анализе веществ химически инертных эти задачи решаются во многих случаях сравнительно просто. Если же мы имеем дело с веществами, подверженными различным химическим превращениям, то возникает опасение, что результаты хроматографического анализа могут быть искажены вследствие этих превращений. Следует иметь в виду, что при анализе нестабильных и реакционноспособных соединений искажения в анализе могут быть вызваны подготовкой пробы, отбором пробы, вводом ее в дозатор, процессами в колонке, до детектора и в детекторе. В этой главе будут рассматриваться только процессы, происходящие в хроматографической колонке. [c.9]

    В предлагаемой книге авторы попытались систематизировать вопросы создания систем как качественно нового подхода к использованию вычислительной техники. Книга посвящена комплексному рассмотрению проблемы построения таких систем для анализа и синтеза химико-технологических процессов, изложению методологического подхода — от формулирования проблемы, разработки математического описания отдельных процессов до выбора средств вычислительной техники и языков программирования. Рассмотрены вопросы создания пакетов прикладных программ, техническое и системное математическое обеспечение Единой Системы электронных вычислительных машин (ЕС ЭВМ). Приведено математическое описание и структура систем для решения задач анализа физико-химических свойств веществ и расчета типовых процессов химической технологии. [c.5]

    Аналитический метод построения математической модели состоит в аналитическом описании объекта управления системой уравнений, полученных в результате теоретического анализа физико-химических явлений ка основе законов сохранения энергии и вещества, В этом случав математическая модель содержит уравнения материального и энергетического (теплового) балансов, термодинамического равновесия системы и скоростей протекания отдельных процессов, например, химических превращений, массопередачи, теплопередачи и т,д. [c.12]

    В общем случае интенсификация химического процесса определяется наилучшими условиями, обеспечивающими протекание химической реакции с максимальной скоростью. Следовательно, вопросы интенсификации ХТП решаются на основе анализа кинетики химических реакций. Рециркуляция способствует уменьшению времени реакции и, как следствие этого, в результате быстрого отвода продуктов реакции из реакционной зоны - увеличению концентраций реагирующих веществ. Методика кинетического расчета для определения эффективно функционирующего реакционного узла при наличии рецикла, предложенная М. Ф. Нагиевым, позволяет определить условия, в которых возможна максимальная производительность объема реактора при минимальном образовании побочных продуктов, обеспечивает возможность эффективного применения рециркуляции, дающей максимальный эффект интенсификации химического процесса. [c.301]


    Объектом изучения химической термодинамики являются различные химические и физико-химические процессы, т. е. процессы, в которых происходит изменение химического состава или структуры (отражающейся, в частности, на агрегатном состоянии и кристаллической модификации веществ). Химическая термодинамика является эффективным средством теоретического анализа всего многообразия производственных процессов современной химической технологии. [c.12]

    Методы анализа называют химическими, физикохимическими или физическими в зависимости от того, в какой мере определение химического состава вещества данным методом основано на использовании химических реакций или физико-химических и физических процессов. [c.9]

    Сходство свойств лэнгмюровских сорбционных соединений вольфрама и платины со свойствами обычных химических соединений совершенно очевидно. Интенсивное изучение многочисленными исследователями сорбции различных веществ на всевозможных сорбентах дало надежные доказательства существования монослоев сорбированных веществ, химически связанных с веществом сорбентов, т. е., по существу, настоящих твердых химических соединений. Теоретический анализ экспериментальных данных, в частности данных, указывающих на необычайно высокие значения теплот мономолекулярной сорбции, позволил Поляньи (1929 г.) сделать вывод, что атомы, образующие монослой, связаны с атомами, принадлежащими поверхности сорбента, типичными гомеополярными связями и, следовательно, поверхностные соединения имеют истинно химический характер. [c.50]

    Недостатком обычных количественных методов анализа, в частности, весового и объемного, является потребность в сравнительно большом количестве вещества для анализа. Этот недостаток можно устранить, пользуясь в специальных случаях микро- и ультрамикрометодами количественного анализа, которые пригодны для анализа с несколькими миллиграммами или микрограммами вещества . Химическая основа обычных методов анализа и микроанализа одна и та же, так как и в тех и в других протекают одинаковые химические реакции. Главное отличие заключено в технике эксперимента и в применяемой аппаратуре. [c.139]

    Методы определения часто делят на химические и физико-химические, иногда выделяя группу физических методов анализа. К химическим, или, как их еще называют, классическим методам анализа относят гравиметрический и титриметрический. В физико-химических и физических методах анализа наблюдаются и измеряются такие свойства вещества, как интенсивность спектральной линии в эмиссионной спектроскопии, величина диффузионного тока в полярографии и т. д. Многообразие физико-химических методов анализа является проявлением многообразия форм существования и движения материи. [c.13]

    Метод простой нормировки. Метод основан на предположении, что вещества независимо от их строения, взятые в одинаковом количестве, дают одну и ту же площадь пика. Это приближенно выполняется, если вещества химически сходны, а в качестве газа-носителя берут газ, теплопроводность которого приблизительно на порядок отличается от теплопроводности анализируемых веществ. Такими газами обычно являются водород и гелий. Для количественного анализа вначале суммируют площади всех пиков и делят площадь каждого отдельного компонента на сумму площадей. После умножения на 100 получают содержание в процентах. [c.127]

    Метод химической ионизации состоит в образовании ионов под действием других ионов, генерируемых в отдельной камере. При химической ионизации положительных ионов генерируемые ионы представляют собой доноры протонов, которые при столкновении с молекулами анализируемых веществ отдают )1м протон, образуя при этом псевдомолекулярные ионы (М+Н)+- По последним можно устанавливать молекулярную массу компонентов в смеси. Аналогично происходит образование отрицательных ионов с акцепторами протонов (С1 , ОН- и др.). Анионная химическая ионизация (с 0Н ) была применена для анализа 17 образцов нефтей с целью идентификации их месторождений. Для описания конкретной нефти бралось 30 характеристичных пиков (для сокращения процесса анализа) [204]. Химическая ионизация с положительными ионами позволяет определить тип азотсодержащих соединений в нефтях [205]. Недостатком метода является его малая эффективность для определения полной структуры или даже элементов структуры компонентов ввиду малой степени фрагментации, отсутствию данных по закономерностям химической ионизации многих классов соединений, встречающихся в нефтях. Однако сочетание этого метода с другими методами масс-спектрометрии может дать полезные сведения для анализа нефтей. Например, распад ионов, полученных при химической ионизации смеси углеводородов и серусодержащнх соединений с выделением частицы 5Н (масса 33) был применен при анализе на приборе ударной активации [206]. [c.136]

    Сущность метода сводится к тому, что с помощью химических реагентов, а также под действием физических факторов нелетучие, неустойчивые, агрессивные вещества переводят в летучие, устойчивые соединения, удобные для газохроматографического анализа. Такие химические превращения можно проводить перед или после хроматографической колонки, или же в самой хроматографической колонке. [c.22]

    КАЧЕСТВЕННЫЙ АНАЛИЗ — совокупность химических, физико-химических и физических методов, применяемых для обнаружения элементов, ионов, радикалов и соединений, входящих в состав веществ или смесей. В К. а. используют характерные реакции, при которых наблюдается появление или исчезновение окрашивания, выделение или растворение осадка, выделение га- [c.123]

    КИНЕТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА — методы химического анализа, использующие зависимость между скоростью реакции и концентрацией реагирующих компонентов. Анализируемое вещество может расходоваться в процессе реакции или быть ее катализатором. В последнем случае К- м. а. характеризуются очень высокой чувствительностью. Благодаря этому К. м. а. применяются для определения микроэлементов, ничтожных концентраций веществ, примесей в металлах, сплавах, в воде и в веществах особой чистоты. [c.126]

    Предшествующая часть настоящей главы была посвящена анализу влияния химических стадий различной природы на кинетические закономерности и механизм электродных реакций с участием органических соединений. Рассмотрим теперь некоторые конкретные примеры исследования механизма реакций электровосстановления органических веществ. [c.262]

    Направленная кристаллизация используется и в физико-химическом анализе для построения диаграмм состояния или уточнения их углов при работе с разбавленными растворами. Так, определив методом направленной кристаллизации равновесный коэффициент разделения заданной смеси основное вещество — примесь, нетрудно построить для интересующего нас концентрационного интервала линию солидуса при известной линии ликвидуса, полученной, например, методом дифференциального термического анализа. При решении вопроса о существовании области твердых растворов в бинарных системах с малым содержанием одного из компонентов она даже имеет преимущество в точности по сравнению с таким классическим методом, как метод дифференциального термического анализа. Направленную кристаллизацию применяют и для кристаллизационного концентрирования примеси при анализе веществ особой чистоты. [c.117]

    Далее определяют молекулярную массу и осуществляют количественный элементный анализ вещества. На основании данных о массовой доле углерода, водорода, азота, галогена, серы и т, д. выводят брутто-формулу вещества. С целью определения строения вещества проводят функциональный анализ. Существует целый ряд химических методов качественного и количественного анализа различных функциональных групп гидроксильной, карбоксильной, эпоксидной, аминогруппы, кратных связей и т. д. [c.229]

    Наряду с химическим анализом веществ и их систем в современной химии широкое распространение получил физико-химический анализ, предложенный М. В. Ломоносовым, развитый Д. И. Менделеевым и выделенный в самостоятельную дисциплину [c.27]

    Весовой анализ — один из наиболее давно известных, хорошо изученных методов анализа.С помощью весового анализа установлен химический состав большинства веществ. Весовой анализ является основным методом определения атомных весов элементов. Весовой метод анализа имеет ряд недостатков, из которых главные — большие затраты труда и времени иа выполнение определения, а та1сже трудности при определении малых количеств веществ. В настоящее время в практике количественного анализа весовой метод применяют сравнительно редко и стараются заменить его другими методами. Тем не менее весовой анализ используют для определения таких часто встречающихся компонентов, как, например, двуокись кремния, сульфаты и др. Методом весового анализа нередко устанавливают чистоту исходных препаратов, а также концентрацию растворов, применяемых для других методов количественного анализа. Изучение теории весового анализа очень важно также потому, что эти методы применяются для разделения элементов — не только в аналитической химии, но также в технологии, в частности, при выделении редких металлов, при получении чистых препаратов и др. [c.29]

    Из экспериментальных важнейшим является метод химических реакций, который служит основой качественного и количественного анализа веществ и их синтеза. Здесь главную роль играют изменение состава веществ и количественные соотношения между реагирующими веществами. При проведении химических реакций и получении веществ в чистом виде важное значение имеют разнообразные препаративные методы осаждение, кристаллизация, фильтрование, перегонка, сублимация и т. п. За последние годы они получили большое развитие и широко применяются для получения веществ высокой степени очистки. Сюда можно отнести методы зонной очистки, направленной кристаллизации, вакуумной перегонки и сублимации. [c.8]

    Физико-химические методы отличаются повышенной по сравнению с классическими методами чувствительностью и избирательностью, поэтому для анализа физико-химическими методами, как правило, требуется незначительное количество анализируемого вещества, а содержание определяемого элемента в образце может быть чрезвычайно мало. [c.19]

    При выполнении анализа физико-химическими методами во многих случаях отпадает необходимость отделения определяемых компонентов от других составных частей анализируемого вещества, а также необходимость применения индикаторов. Для проведения анализа физико-химическими методами иногда требуется несколько минут. [c.19]

    Применимость методов структурного анализа обусловливается чистотой или, вернее, индивидуальностью пробы. Любому структурному анализу должно предшествовать отделение анализируемого вещества в наиболее чистом состоянии от возможных сопутствующих веществ химическим или физическим методом. В исключительных случаях (например, в случае спектроскопии ядерного резонанса высокого разрешения) допускается небольшое содержание примесей в анализируемом образце. Но в любом случае примеси усложняют расшифровку спектра анализируемого вещества. Для спектральных методов структурного анализа необходима небольшая проба анализируемого вещества (табл. 8.15). В случае раман-спектроскопии иногда необходимо брать пробу анализируемого вещества до 10 г. Применяя специальную технику (например, лазеры, микрокюветы, используя методы накопления), можно и для небольших проб веществ получить достаточно отчетливые спектры. Особенным преимуществом спектроскопических методов исследования структуры веществ является возможность получения спектров без разрушения образца (за исключением метода молекулярной масс-спектрометрии). [c.408]

    Кинетический анализ должен включать не только анализ закономерностей химических реакций, но и анализ процессов переноса вещества и теплоты в изучаемой системе. Исследования такого рода составляют предмет макроскопической кинетики — макрокинетики. [c.157]

    Экспрессность прямых методов имеет важное значение не только с точки зрения суммарных затрат времени при проведении большого числа серийных анализов, но и особенно при анализе веществ химически нестойких, легко гидролизующихся или выделяющих воду при хранении. Для таких веществ длительные методы косвенного ана.11иза зачастую вооЬще неприменимы. [c.33]

    Что же касается аналитической химии, то, по-видимому, логическим основанием для выделения ее в самостоятельную химическую дисциплину является четко очерченная конечная цель — разработка и обоснование путей и методов химического анализа вещества. Химический анализ — определение или измерение хихмического состава вещества — и химический синтез — направленное и контролируемое созидание, конструирование химических веществ наперед заданного состава — две основные задачи химии как единой науки, призванной в конечном счете служить интересам общества. [c.7]

    Химическая формула, указывающая относительные количества атомов каждого из элементов в соединении при помощи целых чисел, не имеющих общего кратного, называется эмпирической формулой соединения. Элементный анализ вещества приводит именно к эмпирической формуле, а не к молекулярной формуле, которая может совпадать с эмпирической формулой, но может представлять собой ее целое кратное. Для метана и воды эмпирические формулы совпадают с молекулярными формулами СН4 и Н2О ацетилен и бензол имеют общую эмпирическую формулу СН, но первому из них отвечает молекулярная формула С2Н2, а второму-С Н . [c.68]

    Нет смысла более подробно останавливаться на деталях данной системы формализации знаний, поскольку они подробно освещены в отдельном издании настоящей серии по системному анализу процессов химической технологии [9]. Отметим только, что этот подход основан на формулировке обобщенной системы уравнений переноса массы, энергии, импульса, момента импульса, электрического и магнитного заряда с учетом всех возможных видов превращений вещества и энергии (исключая внутриатомные), преобразовании обобщенной системы уравнений переноса с помощью локального варианта уравнения Гиббса, получении на этой основе обобщенной диссипативной функции физико-химической системы, декомпозиции обобщенной диссипативной функции на все возможные виды диссипации энергии, введении диаграммной символики для каждого вида диссипации и дополнении этой символики диаграммным изображением сопутствующих явлений недиссинатив- [c.226]

    Руководство включает основные теоретические положения неорганической, органической, физической и аналитической химии, электрохимии, термодинамики, сведения по техническому анализу, общей химической технологии, примеры решений типовых задач. Приведен обширный справочный материал по продуктам основного неорганического и органического синтеза, по строительным материалам, удобрениям, лекарственным веществам и т, д. Справочное руководство рассчитано на студентов, лабдрантов вузов и заводских лабораторий. [c.2]

    В настоящее время терминология методов страдает известной нечеткостью. Так, фотометрией называют непосредственное определение концентрации окрашенного вещества. Если же идет речь о методе, в котором определяемый компонент с помощью химических реакций переводят предварительно в окрашенное соединение, говорят о фотометрическом анализе. В этом случае главное значение для точности и времени анализа имеют химические процессы и факторы. Аналогичное соотношение имеет место между терминами кондуктометрня и кондуктометрический анализ, потенциометрия и потенциометрический анализ и др. [c.18]

    Закон Гесса ифает важную роль при анализе путей химических превращений и является основным законом термохимии. С его помощью можно рассчитать теплоты процессов, проводя их разными путями и используя даже гипотетические состояния или вещества. [c.45]

    Химические и физические методы изучения Молекул. В создании правильных представлений о строении и свойствах молекул химические методы исследования играют главную роль. На основании элементарного анализа устанавливается эмпирическая формула вещества, а строение подтверждается в ходе исследования характерных для данного вещества химических реакций. Наряду с химическими методами исследования все большее значение приобретают физические методы. Их широкое использование обусловлено рядом преимуществ, например, физические методы, как правило, не вызывают каких-либо изменений в строении молекул изучаемых веществ, они значительно сокращают время и путь исследования. Когда же устанавливаются тонкие различия в структуре молекул (различия в характере связей, реакцрюнной способности групп и атомов, внутримолекулярные превращения и т. п.), физические методы оказываются незаменимыми и единственно возможными методами изучения. В химии используется большое количество физических методов, основанных на зависимости разнообразных физических (электрических, оптических, магнитных и др.) свойств от химической структуры молекул. Ниже в краткой форме рассматривается сущность ряда наиболее разработанных физических методов и их применение для изучения строения молекул. [c.36]

    Физико-химические методы анализа. Для анализа веществ широко используются химические реакции, протекание которых сопровождается изменением физических свойств анализируемой системы, например ее цвете, интенсивности окраски, прозрачности, флуоресценции, величины ЭЛСК7 ро- и теплопроводности, и т, д. [c.17]

    Внутренние и внешние хроматограммы. Вопрос получения внутренних или внешних хроматограмм при разделении веществ имеет важное значение для последующего качественного и количественного определения веществ. Внутренние хроматограммы получают в случае разделения или идентификации веществ непосредственно на стационарной фазе. В этом случае прояви ление хроматограммы заканчивается прежде, чем подвижная фаза доходит до конца слоя сорбента. Если же элюирование продолжают до тех пор, пока вещество вместе с подвижной фазой не достигнет конца стационарной фазы, и исследуют затем небольшие порции элюата, то получают внешнюю хроматограмму при построении зависимости концентрации элюата от его объема, (мл). В случае окрашенных компонентов или при отличии свойств компонентов (различной радиоактивности, способности абсорбировать УФ- или ИК-излучение) от свойств стационарной фазы внутреннюю хроматограмму можно определить визуально или зарегистрировать на стационарной фазе. Хроматограммы такого типа получают в бумажной и тонкослойной хроматографии, отчасти и в колоночной. Бесцветные соединения можно проявлять, химическим путем. Качественный анализ веществ проводят, оценивая за медление передвижения анализируемого вещества относительно движения фронта растворителя. Для этого сравнивают путь, пройденный веществом, с путем, пройденным фронтом растворителя, и отношение между ними обозначают через [c.345]

    Согласно рекомендациям ИЮПАК количественное определение вещества рассматривается как измерение. Под количественным анализом вещества понимается ...экспериментальное определение (измерение) концентрации (количества) химических элементов (соедр[нений) или их форм в анализируемом веществе в виде границ доверительного интервала с указанием стандартного отклонения . [c.81]


Смотреть страницы где упоминается термин Анализ вещества химический: [c.270]    [c.363]    [c.6]    [c.10]    [c.268]    [c.32]   
Аналитическая химия. Т.1 (2001) -- [ c.7 , c.33 ]

Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.19 , c.97 , c.105 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ вещества

Анализ смесей катионов и анионов (качественный химический анализ вещества)

Анализ химический

Атомно-абсорбционная спектрофотометрия меди применительно к анализу химических реактивов и химических веществ особой чистоты. Н. П. Иванов, Н. Л. Козырева

БИОФИЗИЧЕСКИЕ И ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДИКИ Капустин, Н. А. Лебединский. Применение методики эмиссионного спектрального анализа при изучении действия на рыб токсических веществ

Глава шестнадцатая. Химическая идентификация и анализ вещества

Масс-спектрометр для анализа химического состава газообразных, жидких и твердых веществ МХ

Общие методы анализа химических веществ, выделяющихся в жидкие среды

Подготовка вещества к качественному химическому анализу

Применение физико-химических методов для анализа смесей веществ

Применение химических методов анализа в производстве неорганических веществ

Применение химических методов анализа в производстве органических веществ и нефтепродуктов

Применение экстракции аминами для синтеза и анализа химических реактивов и особо чистых веществ. И. А. Шевчук

Принципы и методы санитарно-химического анализа веществ, выделяющихся из пластмасс в воздух

Разделение, выделение и концентрирование веществ в химическом анализе

Современное состояние и перспективы развития инструментальных методов анализа химических реактивов и особо чистых веществ. Божевольнов Е. А., Чупахин М. С., Ластовский

Физико-химический анализ систем из органических веществ

Физические и физико-химические методы исследования Быстрый масс-спектрометрический метод изотопного анализа, кислорода органических веществ. —И. П. Граверов

Химические анализы и накопление сухого вещества

Химические и физико-химические методы анализа Определение содержания основного вещества в хлорфосфоназо

Химические и физико-химические методы анализа Применение электрохимических методов концентрирования при спектральном анализе веществ особой чистоты. (Обзор) Красильщик, А. Ф. Яковлева

Химические методы анализа органических веществ

Химический анализ неорганических веществ

Химический ое не ная химическая вещества

Частьпервая Определение в жидких средах химических веществ, выделяющихся из пластмасс Принципы и методы санитарно-химического анализа пластмасс

ЭЛЕКТРОННО-ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА НЕСОВЕРШЕНСТВ КРИСТАЛЛИЧЕСКОГО СТРОЕНИЯ, ФАЗОВОГО И ХИМИЧЕСКОГО СОСТАВОВ СПЛАВОВ Взаимодействие электронов с веществом



© 2022 chem21.info Реклама на сайте