Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

АЬОз—BaO

Таблица 2. Энергия активации конфигурационной изомеризации цис-1,2-диметилциклогексана в присутствии металлов, отложенных на АЬОз [48] Таблица 2. <a href="/info/2894">Энергия активации</a> <a href="/info/1456949">конфигурационной изомеризации</a> цис-1,2-диметилциклогексана в <a href="/info/66785">присутствии металлов</a>, отложенных на АЬОз [48]

    Образование циклогексена наблюдалось [91] при селективном гидрировании бензола в водных системах в присутствии Ru/СаСОз, Ru/ a (ОН) 2 и Ru с добавками Fe, Со, Ni на носителях Са(0Н)2 или АЬОз при 180— 200 °С и давлении 6,9 МПа. Установлено, что добавка ионов переходных металлов (в небольших концентрациях) снижает активность Ru-катализаторов на носителях, но увеличивает селективность образования ц лоалка-нов. Предполагают, что активные центры Ru, на которых образуется циклогексен, модифицируются хемосорбцией ионов Fe, Ni, Со и что промежуточные циклоалкены образуются на тех же центрах, на которых при повышенных температурах происходит гидрирование бензола и этих промежуточных циклоалкенов. [c.49]

    Вычислить выход алюминия, на производство каждой тонны которого расходуется около 2 т глинозема с массовой долей АЬОз 0,945. Следует учесть, что алюминий не содержит примесей. [c.55]

    Оксид алюминия АЬОз — тип адсорбента, широко распространенный в природе и давно используемый в промышленности. Активированный оксид алюминия выпускается нескольких марок и разной формы — гранулированный, цилиндрический и шариковый. Это самый дешевый адсорбент, но его адсорбционная способность невысока. Достоинство оксида алюминия— стойкость по отношению к капельной влаге. Иногда он используется в качестве защитного слоя для силикагеля и цеолитов. [c.91]

    Приведем простейший пример. Если через колонку с АЬОз пропустить раствор, содержащий u2+ и Со -, после чего слегка промыть колонку водой, то мы получим хроматограмму, содержащую две различно окрашенные зоны верхнюю — голубую зону u2+ и нижнюю — розовую зону Со + (см. рис. 18). Когда разделяемые вещества или ионы бесцветны, для получения хроматограммы колонку проявляют действием того или иного реактива. Напри- [c.130]

    Таким катализатором является прежде всего смесь окиси хрома и окиси алюминия (10% СгзОз, 90% АЬОз). Пропуская над подобным катализатором, например, бутан, можно при однократном проходе получать более чем 90%-ный выход бутена и водорода [14]. II [c.47]

    Как известно, не всегда удается подобрать подходящий растворитель. Иногда для разложения вещества и перевода определяемой составной части в раствор приходится прибегать к сплавлению (или спеканию) вещества с теми или иными плавнями. После сплавления получаются новые соединения, которые в отличие от исходного вещества растворимы в воде или в кислотах. В зависимости от химического характера анализируемого вещества применяют различные плавни. Так, чтобы перевести в раствор нерастворимую в кислотах модификацию АЬОз, можно, учитывая амфотер-ный характер этого окисла, употреблять и щелочные, и кислотные плавни. [c.137]


    По данным Го [162], в определенных случаях наблюдается полностью неселективный гидрогенолиз циклопентанового кольца. Например, для метил- и 1,3-диметил-циклопентанов в присутствии (6—20% Pt)/АЬОз (315°С, 3 МПа) реакция протекает очень селективно, в то время как при низком содержании Pt в катализаторе (0,15—0,60%) гидрогенолиз связей кольца происходит по статистическому закону распределения. В присутствии катализаторов с большим содержанием платины при относительно низких температурах и низких давлениях водорода преобладает главным образом селективный разрыв С—С-связей кольца метилциклопентана. В то же время при неселективном разрыве на катализаторах с низким содержанием платины не наблюдается какой-либо определенной зависимости от температуры. В случае 1,3-диметилциклопентана влияние температуры сказывается более значительно. [c.130]

    На основании результатов, полученных при изучении гидрогенолиза метилциклопентана и взаимной изомеризации образующихся при этом изомерных гексанов на различных Pt-катализаторах (напыленная в вакууме пленка, Pt, отложенная на АЬОз, активированном угле и пемзе), был сделан вывод [170, 171], что взаимные переходы изомерных гексанов, их Сз-дегидроциклизация в метилциклопентан и гидрогенолиз последнего проходят с образованием единого циклического переходного комплекса  [c.135]

    Металлы платиновой группы, нанесенные на -АЬОз, катализируют гидродеалкилирование толуола [254—256]. Каталитическую активность металлов в указанной реакции сравнивали при 300— 500 °С в условиях импульсного режима [254], а также при 350— 560 °С в проточной системе [256] при атмосферном давлении. При 490 С активность катализаторов изменяется в ряду Rh > Ir > [c.174]

    А И А — алканы О и О — алкены М и К — соответственно металлические и кислотные участки катализатора) были исследованы превращения изомерных бутанов, в том числе н-бутанов, меченных в метильной и метиленовой группах, пентанов, гексанов. Опыты проводили в атмосфере водорода над (1—2% Р1)/(5Ю2—АЬОз) при 300 °С. Исследование кинетики взаимных превращений различных изомерных алканов состава С4—Се позволило определить эффективные константы скорости взаимопревращений каждой пары (скорость превращения н-гексана в 2-метилпентан принята за стандарт, при этом соответствующая константа скорости равна 10). Поскольку все реакции обратимы, то равновесие в каждой стадии [c.205]

    Температура процесса регулируется при помощи подвешенного в реакторе теплообменника. Разность температур в реакторе составляет 5—6°. Температура синтеза 305—345°, давление 28—45 ат, состав исходного газа примерно 1,8—2,0 Н2 1,0 СО. Как правило, применяют циркуляцию с подачей двух объемов циркуляционного газа на 1 объем свежего. Вначале в процессе употребляли катализатор синтеза аммиака состава 97% Рсз04, 2,5% АЬОз и 0,5 /о К2О. Позже был использован природный магнетит с 0,5% К2О. Катализатор размалывают (до диаметра частиц 0,045—0,45 мм) и. полностью восстанавливают при 350— 460" в кипящем слое,. в то кс водорода. После воостанозлепия температуру снижают ДО 290—300° и подают возрастающее количество синтез- [c.121]

    Осаждаемой формой (или формой осаждения) называется то юединение, которое осаждается из раствора при взаимодействии соответствующим реагентом, а весовой формой — соединение, которое взвешивают для получения окончательного результата анализа. Например, при определении РеЗ+ и Al + осаждаемой формой ивляются обычно водные окиси РегОз-лНгО и АЬОз-пНгО [также обозначаемые формулами Ре(ОН)з и А1(0Н)з и называемые гид-)оокисями], получаемые действием NH4OH на анализируемый рас- вор. Весовой формой являются безводные окиси РеаОз и AI2O3, образующиеся из указанных водных окисей при прокаливании 1[х, например  [c.66]

    Ре ", т. е. путем доведения до конца гидролиза его соли аммиаком с последующим превращением осадка А1(0Н)з в АЬОз прокаливанием. Однако этот часто применяемый метод в данном случае сильно осложняется. Прежде всего А1(0Н)з как амфотер-ная гидроокись заметно растворима в избытке ЫН40Н. Поэтому полное осаждение АР+ требует весьма точного регулирования pH раствора . Во-вторых, осадок сравнительно трудно отфильтровывается и отмывается от адсорбированных примесей. [c.173]

    Осадок оксихинолината алюминия — кристаллический он легко отфильтровывается и отмывается от примесей, при прокаливании превраи1ается в АЬОз. Выгодное, однако, не прокаливать осадок, а высушивать его до постоянной массы, — поскольку весовая форма Al( 9HвNO)з не гигроскопична и процентное содержание в ней алюминия меньше, чем в АЬОз. Понятно, что при таком окончании анализа отделять осадок необходимо через стеклянный фильтрующий тигель (или через тигель Гуча), но не через бумажный фильтр. [c.174]

    Это удобно в том отношении, что погрешности опыта менее скажутся на окончательном результате огределения, чем при употреблении в качестве в зсовой формы АЬОз. [c.174]

    Для определения содержания металлического алюминия в бронзе прежде всего на.ходят титриметрическим методом содержание в ней железа. Затем железо н алюминий осаждают прибавлением аммиака и, прокалив полученный осадок, находят суммарную массу Ре Оз + AI2O3, Из полученных данных вычисляют содержание алюминия следующим образом. Найденную массу Fe, умноженную на 1,4297, вычитают из массы РваОз + АЬОз и полученную разность умножают на 0,5293. Какое значение имеют в данном случае множители 1,4297 и 0,5293  [c.191]


    Оксид алюминия известен в виде нескольких модификаций. Наиболее ус-тойчинон кристаллической формой является сс-АЬОз (ромбоэдрическая ре-шеткгО- В его кристаллах (см. рис. 72) проявляется октаэдро-тетраэдрическая координация атомов (к. ч. А1 6, к. ч. [c.453]

    Пример 8. Анализ нефелино-апатитовой руды показал, что она содержит 20,6% Р2О5 и 8% АЬОз- Подсчитать отдельно [c.37]

    Описано [107] гидрирование аренов на Р1/А120з, Рё/ЛЬОз, Ки/АЬОз, а также на биметаллических катализаторах Р1—Ке, Рс1—Ке и Ки—Ке, нанесенных на АЬОз (суммарное содержание металлов 0,6%). Отношение активностей катализаторов Р1 Ки Рё составляет 4,2 2,6 1, а для биметаллических катализаторов, содержащих равные количества обоих металлов, отношение (Р1—Ке) (Ки—Ке) (Рс1—Ке) равно 4,1 1,9 1. [c.56]

    Каталитические свойства системы (Р1—5п)/АЬОз в реакции гидрирования бензола описаны в работах 108, 109]. Установлено [108], что биметаллический катализатор, полученный пропиткой АЬОз растворами, содержащими комплекс [Р1С12(5пС1з)2] , с последующим вос- [c.56]

    В дальнейшем это направление подробно исследовано в работах Л. X. Фрейдлина, Е. Ф. Литвина и сотр. [113—116]. Наиболее перспективными оказались Ru-катализаторы. Показано [115], что скорости гидрирования крезолов, алкиланилинов, аминофенолов к алкокоианилинов на Ки/АЬОз снижаются при увеличении алкильного заместителя (от i до Се) и при введении алкильных и ацетильных заместителей в аминорруппу. Скорость гидрирования уменьшается в ряду п- > м- > 0-. В водной среде скорость гидрирования в 1,5— 5 раз выше, чем в спирте. Оказалось, что при гидрировании дизамещенных бензолов с функциональными заместителями (ПО—125 °С,. давление водорода 7 МПа) состав образующихся стереоизомеров не-определяется их относительной термодинамической устойчивостью — [c.57]

    Изучен гидрогенолиз и дегидрирование н-пентана в присутствии Ки/АЬОз (0,034—1,492% Ни) и Ки-черни при 450—490 °С и, атмосферном давлении [36—39]. Кинетический порядок реакции по углеводороду равен 0,4, порядок по водороду равен 0,7. Активность катализатора сильно зависит от топографии его поверхности максимальную удельную активность проявил катализатор, содержащий 0,085% Ки. На основании полученных данных был сделан вывод, что предварительная стадия включает в себя конкурентную адсорбцию углеводорода и водорода на одних и тех же активных центрах, состоящих, как правило, из двух-трех атомов Ки. Адсорбция алкана на таком центре приводит к образованию частично дегидрированных промежуточных частиц состава С5Н10 или С5Н9. Стадией, лимитирующей скорость реакции, является поверхностная реакция между такими ненасыщенными частицами и адсорбированным водородом. [c.95]

    Влияние -носителя на гидрогенолиз циклопропана и метилциклопропана исследовалось на нанесенных катализаторах Р1/А120з и Р1/(5102—АЬОз) [88]. Показано, что начальные скорости гидрогенолиза обоих углеводородов на Р1/А1г0з пропорциональны поверхности Р1. В присутствии катализаторов Р1/(5102—А 2О3), содержащих менее 1% Pt, активными компонентами являются как Р1, так и носитель. При большем содержании Р1 в катализаторе селективность, выраженная отношением изобутан/к-бутан, сохраняет постоянное значение по мнению авторов [88], это указывает на то, что гидрогенолиз протекает исключительно на металлических центрах. [c.103]

    В дальнейшем в работе [104] был предложен и проверен метод определения лимитирующей стадии ряда параллельно-последовательных каталитических реакций. Метод заключается в сравнении наблюдаемого распределения О-атомов в продуктах - реакции и состава этих продуктов с теоретически рассчитанными для того или иного механизма реакции, проводимой в атмосфере Ог либо в смеси Нг и Ог. Возможности этого метода продемонстрированы на примере реакции дейтеролиза гем-диметилциклопропана в присутствии пленок Р1, Р(1, 1г и тех же металлов, нанесенных на АЬОз. Оказалось, что только две из семи обсуждаемых моделей согласуются с экспериментальными результатами по распределению продуктов реакции. Наибольшее предпочтение авторы отдают механизму, при котором происходит одновременное присоединение двух Н-атомов к адсорбированной на катализаторе молекуле гем-диметилциклопропана. Для уточнения предложенной [104] кинетической модели [c.107]

    Показано [162], что селективность алюмоплатиновых катализаторов с содержанием Pt ниже 1 % существенно отличается от селективности катализаторов с высоким содержанием Pt. Большую роль играет также носитель катализатор (10% Р1)/пемза ведет себя подобно (10% Pt)/АЬОз селективно, тогда как катализатор (10% Pt)/С вызывает неселективный гидрогенолиз и сходен с катализатором (1% Р1)/АЬ0з то же можно сказать и о некоторых напыленных пленках Pt. [c.130]

    В дальнейшем [89] подробно изучены закономерности гидрогенолиза метил- и 1,2-диметилциклопентанов. На Pt-катализаторах гидрогенолиз может протекать одновременно по трем независимым механизмам, каждый из которых характеризуется специфическим распределением продуктов реакции. По первому, по терминологии авторов [89], неселективному, механизму гидрогенолиз проходит почти с равной вероятностью по всем связям кольца. Такой механизм характерен для Pt- и Pd-пленок при достаточно высоких температурах по этому же механизму проходит гидрогенолиз метил- и 1,2-диметилциклопентанов на Р1/А1гОз с содержанием Pt около 0,2%. Второй, так называемый селективный, механизм наблюдается на Pt-пленках при более низких температурах, а также при 220°С на (10% Pt)/АЬОз. Для этого механизма характерен разрыв лишь неэкраниро-ванных Свтор—Свтор-связей. Наконец, по третьему, частично селективному, механизму происходит гидрогенолиз главным образом неэкранированных, но в какой-то мере и экранированных, связей кольца. Распределение продуктов гидрогенолиза в этом случае не является линейной комбинацией двух первых типов. Однако значение энергии активации при этом механизме является промежуточным между значениями энергий активации гидрогенолиза по двум первым механизмам. Поскольку первый механизм затрагивает все связи кольца, как экранированные, так и неэкранированные, то соответствующие промежуточные соединения являются, по мнению [c.132]

    При исследовании механизма раскрытия пятичленного кольца на различных образцах Р1/А1гОз обнаружено [181] прямое размыкание метилциклопентана на кислой АЬОз. Полагают, что реакция идет путем промежуточного образования протонированной циклической структуры. [c.138]

    Возвращаясь к Рс1-содержащим катализаторам, следует отметить работу [235], в которой исследован гидрогенолиз циклопентана и гидрирование бензола на Рд/АЬОз и Р6/8Ю2 с различной степенью дисперсности палладия. Высокую степень дисперсности Рс1 (до 100%) получали после прокаливания образца при 400°С в кислороде и восстановления сухим водородом при 300 °С. Изменение температуры прокаливания и восстановления приводило к заметному спеканию металлической фазы. Бензол гидрировали при 140 °С при парциальных давлениях углеводорода и водорода, равных соответственно 74-102 936-102 Па порядок реакции по бензолу — нулевой. Гидрогенолиз проводили при 290 °С парциальные давления циклопентана и водорода составляли соответственно 133-10 и 877-10 Па порядок реакции по цик-лопентану оказался близким к нулевому, каталитическую активность выражали в числах оборота атома Рс1. Активность образцов Р(1/у-А120з в реакции гидрогенолиза циклопентана не зависела от дпсперсности таким образом, на указанном катализаторе эта реакция структур- [c.164]

    Гидрогенолиз циклопентана исследован [243] в интервале температур 125—330 °С на серии металлических катализаторов VIII группы, а также на Ре/АЬОз и Си/МгОа. Исследование проводилось на образцах катализаторов, содержащих 0,05, 0,2, 1,0 и 5,0% Р1, 1% Рс1, 0,075% №, 1 и 10% №, 5, 10 и 20% Со, 10% Си, 1% Ре, а также по 0,1% Ки, Оз и 1г. В присутствии Р1- и Рс1-ка-тализаторов гидрогенолиз циклопентана протекает селективно с образованием только к-пентана Рс1 малоактивен и быстро отравляется, Ре- и Си-катализаторы неактивны даже при 450 °С. В присутствии КЬ- и 1г-катализаторов при температурах ниже 200 °С также образуется только м-пентан при повыщении температуры увеличивался выход алканов состава 1—С4. На Со-, N1-, Ни- и Оз-катали-заторах гидрогенолиз циклопентана протекает во всем исследуемом интервале температур с высоким выходом низкомолекулярных углеводородов. При повышении температуры выход низших углеводородов на N1 и Со уменьшается, а на Ни, Оз, КЬ и 1г —возрастает. Отмечают, что на КЬ и 1г энергия активации образования вторичных продуктов гидрогенолиза несколько выше энергии активации реакции образования я-пентана из циклопентана. С целью выяснения пути образования низкомолекулярных углеводородов — непосредственно из циклопентана или в результате вторичных реакций -пентана — исследован гидрогенолиз циклопентана в присутствии (1% Ы1)/Л120а при различных временах контакта. Установлено, что в начальный момент образуется только н-пентан, а по мере увеличения времени контакта накапливаются низшие углеводороды. Анализ кинетических кривых привел к выводу [243], что на указанном катализаторе при малых временах контакта углеводороды состава С1—С4 образуются вместе с н-пентаном непосредственно из циклопентана. При увеличении времени контакта первичные продукты реакции подвергаются дальнейшему гидрогенолизу. [c.167]

    Исследовались [247] каталитические превращения гексанов и метилциклопентана, в том числе меченных С, на сплавах Pd—Аи и Р1—Аи, нанесенных в количестве 10% на АЬОз. Обнаружено, что на Р(1/А120з, так же как и на Рс1—Аи/А Оз, основная реакция — деметилирование изомеризация н-гексана проходит по циклическому механизму. При всех температурах прокаливания активность Р(1/А120з выше, чем сплавов Рс1—Аи, а селективность практически одинакова. При переходе от чистой платины к сплавам Р1—Аи механизм и селективность реакции сушественно изменяются. Так, на Р1/А120з изомеризация н-гексана протекает по механизму сдвига [c.168]

    Исследовано [261] гидродеалкилирование толуола в присутствии металлов, отложенных на полиамидах. Исследована активность и селективность Р1, КЬ и Р(1 (0,4—5,1% металла), нанесенных на поли-п-фенилентерефталамид, при 140—400 °С. Показано, что катализаторы, полученные нанесением соединений металлов на этот полиамид, имеют низкую гидрирующую активность, в то же время реакция гидродеалкилирования протекает на них при более низких температурах, чем на катализаторах, где в качестве носителей применяются АЬОз или активированный уголь. Был сделан вывод, что гидрирующая активность и селективность металлов, отложенных на полиамидах, обусловлена влиянием носителя и образованием поверхностных активных комплексов. Предполагают, что в этих комплексах атомы переходного металла с валентностью больше нуля координационно связаны с амидной группой полимерной цепи. [c.175]

    Показано [52], что в условиях импульсного режима при 400—540°С над Pd-катализатором [(0,6% Pd)/ /AI2O3] также протекает Сз-дегидроциклизация алканов. Правда, по активности в отношении этой реакции РЙ/АЬОз значительно уступает Р1/А120з. Что же касается Сб-дегидроциклизации, то в указанных условиях оба катализатора обладают примерно одинаковой активностью. При масс-спектрометрическом изучении превращений паров н-гексана над Pd-лентой обнаружено [53], что при давлении ЫО Па Сб-дегидроциклизация н-гексана наблюдается уже при 20 °С, а при повышении температуры до 200°С н-гексан практически целиком превращается в бензол. [c.196]

    В большом цикле работ Го и сотр. [71—73, 82, 83, 86—93] исследованы превращения насыщенных углеводородов (Сб-дегидроциклизация, скелетная изомеризация, гидрогенолиз циклопентанов, гидрокрекинг) в присутствии различных платиновых и других металлических катализаторов. Подробно изучены [73] изомеризация 2-метил-2- С-пентана, З-метил-З- С-пентана и гидрогенолиз метил- С-циклопентана при 270 °С в присутствии (10% Pt)/АЬОз. Состав продуктов превращения существенным образом отличался от состава катализатов, полученных ранее в присутствии (0,2% Pt)/Al203. Анализ полученных результатов привел к заключению, что перемещение и распределение метки С в продуктах реакции обусловлено рядом последовательных перегруппировок в адсорбированном на поверхности катализатора углеводороде перед стадией его десорбции в объем. Исходя из начальных концентраций продуктов реакции, в каждом случае обсуждается вероятность циклического или стадийного механизма сдвига связей. При этом важную роль играет дисперсное состояние активной металлической фазы — в данном случае платины. [c.203]

    Исследование превращений изомерных гексанов и метилциклопентана в присутствии (10% Рс1)/А120з показало [87], что основной реакцией является селективное деметилирование гексанов, а в случае метилциклопентана—гидрогенолиз пятичленного цикла. Вместе с тем, как и в присутствии Pt-катализаторов, происходит изомеризация гексанов. Анализ начального распределения продуктов реакции с использованием молекул, меченных С, показал, что структурная изомеризация гексанов проходит по циклическому механизму. В дальнейшем аналогичные превращения были исследованы [88] в присутствии Pd-, Pt-, а также нового вида катализаторов— сплавов Pd—Au и Pt—Au, осажденных па АЬОз (содержание металла везде 10%). Сплавы палладия менее активны, чем сам Pd, даже после активации воздухом при 400 °С. Основной реакцией в присутствии (Pd— Au)/АЬОз, как на Pd/АЬОз, является селективное деметилирование механизм изомеризации гексанов — циклический. Несколько неожиданный результат был получен в случае Pt-катализаторов при переходе от Pt к сплаву 15% Pt — 85% Au. В то время как на Pt/АЬОз изомеризация н-гексана проходит главным образом по механизму сдвига связей, на (Pt—Au)/АЬОз — по циклическому механизму. Аналогично гидрогенолиз метилциклопентана на указанном сплаве Pt—Au проходит неселективно, в то время как на катализаторе Pt/АЬОз — почти исключительно по неэкранированным С—С-связям цикла. Полученные результаты привели к выводу, что высокая дисперсность Pt и присутствие в непосредственной близости от атомов Pt ионов кислорода являются причинами изомеризации н-гексана по циклическому механизму и неселективного гидрогенолиза метилциклопентана [88]. [c.204]


Смотреть страницы где упоминается термин АЬОз—BaO: [c.9]    [c.193]    [c.212]    [c.214]    [c.214]    [c.221]    [c.221]    [c.90]    [c.231]    [c.44]    [c.63]    [c.35]    [c.79]    [c.130]    [c.177]    [c.178]   
Физическая химия силикатов (1962) -- [ c.86 , c.283 ]




ПОИСК







© 2022 chem21.info Реклама на сайте