Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сложные эфиры, гидролиз в присутствии катализаторов

    Гидролиз сложных эфиров карбоновых кислот можно осуществить при помощи водных растворов кислот или щелочей, водно-спиртовых растворов щелочей и в присутствии ферментов (эстеразы) и других специальных катализаторов. Обычно сложные эфиры гидролизуются в присутствии кислот медленнее, чем под влиянием щелочей. Щелочной гидролиз протекает более гладко, чем кислотный, и чаще используется в лабораторной практике. [c.166]


Таблица 4 Константы скорости реакций гидролиза сложных эфиров в присутствии катализаторов — соляной кислоты и ионита — при температуре 25° [29] Таблица 4 <a href="/info/6092">Константы скорости реакций</a> <a href="/info/43374">гидролиза сложных эфиров</a> в присутствии катализаторов — <a href="/info/1816">соляной кислоты</a> и ионита — при температуре 25° [29]
    Сложные эфиры, в отличие от простых, с большей или меньшей скоростью расщепляются водой — подвергаются гидролизу с образованием вновь кислоты и спирта. Поэтому, как показано в схемах приведенных выше реакций, процесс этерификации обратим и доходит до состояния динамического равновесия. Ионы водорода, как и всякий катализатор, ускоряют протекание не только реакции этерификации, но и обратной ей реакции гидролиза таким образом в присутствии минеральной кислоты быстрее достигается равновесие в процессе этерификации. [c.578]

    Так, например, если ввести в реакцию 1 моль уксусной кислоты и 1 моль этилового спирта в присутствии небольшого количества серной кислоты и дождаться достижения равновесия (через несколько часов), то получают смесь, содержащую по /3 моля сложного эфира и воды и по моля кислоты и спирта. Естественно, та же равновесная смесь получится, если исходить из 1 моля сложного эфира и 1 моля воды в присутствии серной кислоты. Катализатор, ион водорода, который катализирует прямую реакцию — этерификацию, катализирует также и обратную реакцию — гидролиз. [c.574]

    Гидролиз сложных эфиров в присутствии катализаторов [c.541]

    Важное химическое свойство жиров, как и всех сложных эфиров,— способность подвергаться гидролизу (омылению). Гидролиз легко протекает при нагреванпи в присутствии катализаторов — кислот, щелочей, оксидов магния, кальция, цинка  [c.331]

    Реакция этерификации с участием органических кислот протекает очень медленно, но при нагревании и в присутствии катализаторов (минеральные кислоты) скорость ее растет. Эта реакция обратима, поскольку полученный сложный эфир и вода реагируют с образованием кислоты и спирта. А такая реакция вещества с водой, когда составные части воды соединяются с составными частями вещества, называется гидролизом. Скорость обратной реакции, т. е. гидролиза эфиров, к к [c.348]

    Свойства. — Сложные эфиры являются одним из трех наиболее важных типов производных карбоновых кислот. Их легко получить из кислот путем этерификации в присутствии минеральных кислот как катализаторов или другими методами, описанными ниже, и также легко превратить в исходные кислоты путем щелочного гидролиза. Вследствие легкости взаимопревращений, а также потому, что эфиры обладают рядом ценных физических свойств, метод этерификации кислоты или смеси кислот часто используют для очистки, разделения или характеристики кислот. Метиловый и этиловый эфиры представляют собой неассоциированные жидкости, кипящие при более низкой температуре, чем соответствующие ассоциированные кислоты, хотя молекулярный вес их выше. [c.432]


    В отношении жидких однофазных систем отметим катион водорода, который является катализатором длл большого числа реакци( , протекающих в водном растворе. К числу этих реакций относится кислотный гидролиз крахмала, широко применяемый в пищевои промышленности. Другим примером может служить процесс омы ления сложного эфира в присутствии кислот. [c.140]

    В Германии твердый парафин окисляли в больших масштабах. Процесс окисления, продолжавшийся 15—30 час., проводили в алюминиевых реакторах при 130° (110—140°) и 10 ama в присутствии приблизительно 0,1% перманганата в качестве катализатора [15], Чтобы получить кислоты с нужным молекулярным весом, окислению подвергали парафины с 20—30 атомами углерода. Отходящие газы, содержавшие 10—15% кислорода, увлекали с собой все кислоты с 1—5 атомами углерода и часть кислот с 6—8 атомами эти газы промывали водой и из водного раствора выделяли кислоты. Нелетучие продукты окисления состояли из смеси неизменного парафина, спиртов, кетонов, кислот, окси- и кетокислот, высокомолекулярных сложных эфиров и лактонов. При омылении щелочью под давлением при 150—170° эфиры и лактоны гидролизовались в результате такой обработки получалось два слоя. [c.74]

    Реакция обратимая гидролиз сложных эфиров называется омылением. Э. проводят в присутствии катализаторов, например, сильных минеральных кислот (Н ЗО и др.). [c.293]

    Прибавление сухого H l к смеси нитрила и спирта в отсутствие воды приводит к солянокислой соли иминоэфира (иминоэфиры называют также имидатами). Эта реакция носит название синтеза Пиннера [89]. Свободный иминоэфир можно получить из соли действием слабого основания, такого, как бикарбонат натрия гидролиз соли водой в присутствии кислотного катализатора приводит к соответствующему сложному эфиру карбоновой кислоты. Если желательно получить именно этот продукт, то вода может присутствовать в реакции с самого начала в этом случае можно использовать водный раствор НС1, что устраняет необходимость прибавления сухого газообразного НС1. Иминоэфиры синтезируют из нитрилов также под действием основных катализаторов [90]. [c.336]

    Кроме пищевого значения, жиры имеют и техническое применение. При действии воды в присутствии кислотных и щелочных катализаторов происходит гидролиз жиров, как и всех других сложных эфиров. При проведении гидролиза в щелочной среде (едким натром или содой) входящие в состав жира кислоты выделяются в виде натриевых солей, а эти соли ничто иное, как мыла. Поэтому и процесс гидролиза часто называют о м ы л е н и е м СО—о—СНз НО-СН, [c.305]

    Гидролиз протекает в присутствии кнслот или щелочей в качестве катализаторов, а также под действием ферментов (подробнее об этом — в теме Сложные эфиры. Жиры ). [c.539]

    В тех случаях, когда каталитические и субстратные группы принадлежат одной и той же молекуле, может иметь место кардинальное увеличение реакционной способности [24, 25]. В табл. 24.1.2 проиллюстрирован эффект введения карбоксильной группы в ряд ароматических сложных эфиров. Скорости гидролиза этих соединений измеряли при очень низких концентрациях моль-л ). Присутствие карбоксилсодержащих соединений, например ацетата, в таких низких концентрациях не должно в принципе существенно влиять на скорость реакции. Очевидно, что гидролиз сложноэфирной группы катализируется соседней карбоксилатной группой (активна, как обычно, ионизованная форма). Эффективная моль-ность этой группы несомненно много выше ее истинной концентрации в растворе. Этот параметр (последняя колонка в табл. 24.1.2) является наилучшей мерой эффективности данной группы во внутримолекулярном катализе по сравнению с межмолекулярным. Эта величина равна отношению констант первого и второго порядков и имеет в силу этого размерность мольности. Она может быть определена как мольНость внешнего катализатора (в данном случае ацетата), необходимая для протекания реакции с той же скоростью, с какой она идет при наличии катализатора, встроенного в субстрат. Все эффективные мольности в табл. 24.1.2. превышают предел растворимости ацетата в воде, так что эта величина (мольность внешнего катализатора) является гипотетической. Данный параметр учитывает внутреннюю реакционную способность каталитической группы в рассматриваемой системе эффективная мольность хорошего катализатора, по-видимому, совпадает с соответствующей величиной для плохого катализатора (ср. эффективные мольности групп Me,N— и — Oj для номеров 2 и 6, а также 3 и 7, табл. 24.1.2). В связи с этим иногда более показательным параметром эффективности катализа являет- [c.465]

    Метод переэтерификации заключается в нагревании смеси сложного эфира со спиртом в присутствии катализатора с одновременной отгоикой образующего спирта Переэтерификация может сопровождаться гидролизом получаемых эфиров, причем с повышением температуры процесса скорость гидролиза увеличивается Для понижения температуры в случае использования высококипящих спиртов в систему вводят растворитель В качестве растворителя чаще всего применяют толуол. В этом случае образующийся спирт отгоняется вместе с толуолом. [c.248]


    Этерификация является обратимте реакцией и под действием водн происходит гидролиз молекулы сложного эфира, скорость которого заметно увеличивается в присутствии катализатора. [c.33]

    Природные жиры и Масла представляют собой сложные эфиры высших жирных кислот с глицерином, причем чаще всего на молекулу глицерина приходится три молекулы этерифицирующей кислоты (триглицериды). В качестве последней наиболее часто встречается ненасыщенная олеиновая кислота. Наряду с ней в животных жирах находятся пальмитиновая и стеариновая кислоты, а властительных маслах (соевом, арахисовом и др.)—дважды ненасыщенная линолевая кислота. Для производства масляных красок и лаков важное значение имеют так называемые высыхающие масла (ср. разд. Г, 1.6) (например, льняное и китайское древесные масла), которые содержат, кроме того, ненасыщенные кислоты с тремя двойными связями (линоленовую и элеостеариновую). Гидролиз триглицеридов проводят либо под давлением (действием одной только воды или в присутствии основных катализаторов), либо без давления в присутствии кислотных катализаторов, например так называемого реактива Твлтчелла ). Омыление с помощью едких щелочей применяют исключительно для получения мыл — щелочных солей жирных кислот. Получающийся при расщеплении глицерин также находит разностороннее применение (ср. разд. Г,4.1.6). [c.98]

    Гидролизуется сложный эфир медленно в присутствии небольших количеств неорганической кислоты (например, соляной) реакция значительно ускоряется. Гидролиз ускоряется также прибавлением щелочи. Щелочь не только служит катализатором, а вступает затем во взаимодействие с образовавшейся при гидролизе кислотой. В результате реакции получается соль  [c.240]

    Соединения со свободной электронной парой — основания Льюиса —в ряде реакций играют роль основных катализаторов. Отличие нуклеофильного катализа от общего основного заключается в том, что в случае основного катализа обычно происходит отщепление протона, а в случае нуклеофильного — нет. Например, гидролиз сложного эфира в присутствии имидазола, являющегося в нейтральных растворах сильным основанием Льюиса, происходит по следующей предполагаемой схеме. Вначале происходит атака на карбонильный атом углерода со стороны атома азота имидазола, имеющего неподеленную пару электронов, с образованием цвиттер-йона, который, распадаясь, образует устойчивый конечный продукт — спирт и промежуточное вещество. Последнее в результате взаимодействия с водой переходит в состояние неустойчивого цвиттер-иона, распад которого приводит к образованию кислоты и регенерации имида- [c.384]

    На эти реакции несколько похожа реакция присоединения спиртов к третичным олефинам, в результате которой получаются эфиры третичных алкилов. Процесс проводят при 60° и под давлением в присутствии серной кислоты как катализатора. Как и в случае непосредственного получения сложных эфиров из олефинов, образуется равновесная сМесь, которая разделяется на два слоя в верхнем, углеводородном, слое находится эфир. Эфиры третичных алкилов легко гидролизуются минеральными кислотами, в щелочной же и нейтральной среде они устойчивы. От эфиров первичных или вторичных алкилов их отличает очень слабая способность образовывать перекиси. Простейший член этого ряда — метил-трет-бутиловый эфир СНзОС(СНз)з — кипит при 55°. Получен целый ряд таких эфиров, и этот метод распространен тоже на синтез mpem-бутилфенилового эфира ( Hajg O eHs (т. кип. 185—186°), который в мягких условиях перегруппировывается под действием хлористого алюминия в -трет-бутилфенол [28]. [c.201]

    Соед 1нения со свободной электронной парой — основания Льюиса — в ряде реакций играют роль основных катализаторов. Отличие нуклеофильного катализа от общего основного заключается в том, что в случае основного катализа обычно происходит отщепление протона, а в случае нуклеофильного — нет. Например, гидролиз сложного эфира в присутствии имидазола, являющегося в нейтральных растворах сильным основанием Льюиса, происходит по следующей предполагаемой схеме. Вначале происходит атака на карбонильный атом углерода со стороны атома азота имидазола, имеющего неподеленную пару электронов, с образованием [c.409]

    Образование эфиров. При этерификации а-аминокислот спиртами в присутствии кислотного катализатора (газообразный НС1) с хорошим выходом получаются сложные эфиры в виде гидрохлоридов. Для выделения свободных эфиров реакционнук смесь обрабатывают газообразным аммиаком (все реактивь должны быть безводными во избежание гидролиза эфиров) [c.330]

    В отношении жидких однофазных систем отметим катион водорода, который является катализатором для большого числа реакций, протекающих в водном растворе. К числу этих реакций относится кислотный гидролиз крахмала, широко применяемый в пищевой промышленнёсти. По этому методу только для одной кондитерской промышленности в настоящее время изготовляют сотни тысяч тонн патоки. Другим примером моЖет служить процесс омыления сложного эфира в присутствии кислоты. Одним из распространенных каталиЗатГфов является вода. Во многих случаях присутствие следов влаги совершенно необходимо для того, чтобы реакция вообще могла протекать. Часто каталитическое действие оказывает растворитель, ускоряя химическое взаимодействие веществ, находящихся в растворенном состоянии. [c.150]

    Авторы сохранили общий строй книги, но для облегчения пользования материалом отказались от разделения процессов на реакции, проходящие в присутствии и в отсутствие щелочи, воспользовавщись классификацией по типам реакций. Введены отдельные разделы по хиральным и полимерносвязанным катализаторам, которые отсутствовали в первом издании, а также новые разделы относительно нуклеофильного ароматического замещения и реакций металлоорганических соединений в условиях межфазного катализа. Основную часть книги занимает гл. 3, посвященная практическому использованию межфазного катализа, где достаточно подробно освещены вопросы техники проведения межфазных реакций, а затем последовательно обсуждено применение межфазного катализа в реакциях замещения (синтез галогенидов, включая фториды, синтезы нитрилов, сложных эфиров, тиолов и сульфидов, простых эфиров, Ы- и С-алкилирование, в том числе амбидентных ионов), изомеризации и дейтерообмена, присоединения к кратным С—С-связям, включая неактивированные, присоединения к С = 0-связям, р-элиминирования, гидролиза, генерирования и превращения фосфониевых и сульфониевых илидов, в нуклеофильном ароматическом замещении, в различных реакциях (ион-радикальных, радикальных, электрохимических и др.), в металлоорганической химии, при а-элиминировании (генерировании и присоединении дигалокарбенов и тригалометилид-ных анионов), окислении и восстановлении. В каждом разделе приведены конкретные методики проведения реакций в различных условиях межфазного катализа и таблицы примеров синтеза разнообразных классов соединений. В монографии использовано более 2000 литературных источников. [c.6]

    Для энантиоселективного синтеза сложных эфиров использовали оптически активные полиамины (полученные из производных аминокислот). Продукты имели очень низкую оптическую чистоту [1722]. Еще в одной группе опытов была поставлена цель получить сложные эфиры DL-2-фенилмасляной и DL-миндальной кислот при использовании серии хиральных катализаторов с асимметрическим углеродным скелетом с гидроксильными группами и без них. Только в присутствии бромида (li ) - (4 -изопропил)-(1г-метил)-(Зс-триэтиламмоний)циклогек-еа а был достигнут небольшой оптический выход [843, 949]. Оксим сополимера 4-винилпиридина и (5)-5-метилгептен-1-она-3 показал очень умеренное хиральное различие при гидролизе эфира (ОЕ)-/г-нитрофенил-3-метилпентановой кислоты [1723]. [c.107]

    Если катализируемая система и сам катализатор находятся в одинаковом агрегатном состоянии (жидком, паро- или газообразном), катализ называют гомогенным. Примерами последнего могут служить хлорирование метана в присутствии паров хлористого сульфу-рила, образование сложных эфиров из спиртов и карбоновых кислот под действием небольших количеств серной или соляной кислот, реакции кислотного гидролиза и т. д. Если же катализируемая система и катализатор находятся в разных агрегатных состояниях, катализ называют гетерогенным. Примерами гетерогенных каталитических реакций являются синтез метанола или высших спиртов из смесей окиси углерода с водородом над твердыми катализаторами, различные гидро- или дегидрирования, процессы дегидроциклизации, каталитический крекинг, окисление бензола в малеиновый ангидрид или нафталина во фталевый ангидрид и т. д. Гетерогенные каталитические реакции бэлее распространены и имеют большее практическое значение, чем гомогенные. [c.22]

    Ацетаты целлюлозы. Сложные эфиры целлюлозы получают перио- дическим и непрерывным способом. Ацилированию предшествует стадам активации целлюлозы уксусной кислотой, которая вызывает набухание, облегчающее дальнейшие химические превращения. В периодическом процессе получения ацетилцеллюлозы несколько стадии 1) ацетилирование в горизонтальном аппарате с двухлопастной мешалкой уксусным ангидридом в присутствии кислот в качестве катализаторов 2) гидролиз образовавщегося триацетата целлюлозы для получения частично омыленного триацетата с содержанием 60—61 % ацетатных групп или. диацетата с содержанием 56% ацетатных групп 3) высаждение про-.5 дукта разбавленной уксусной кислотой, промывка и высушивание. Аце-- тилирование по непрерывной схеме осуществляют в щнек-машине, шнек i которой совершает не только вращательные, но и возвратно-поступатель- j ные движения. [c.200]

    В процессе обсуждения удобно опираться на частный пример. Так как читателю ближе знакома химия, рассмотрим сложный эфир в качестве субстрата и карбоксильную группу в качестве катализатора. В данном случае предстоит ответить на вопрос, как карбоксильная группа может катализировать гидролиз сложного эфира Экспериментальный подход весьма прост — необходимо наблюдать влияние карбоксильной группы на гидролиз эфира. Рассмотрим вначале наиболее простой пример простейшее карбоксил-содержаш,ее соединение, например уксусную кислоту, и простейший сложный эфир, например этилацетат. Первый эксперимент, таким образом, состоит в измерении скорости гидролиза этилацетата в воде (или в растворе, содержащем преимущественно воду), примерно при 37°С в присутствии изменяющихся концентраций уксусной кислоты. Известно, что гидролиз сложных эфиров катализируется кислотами (см. рис. 24.1.3), поэтому pH не должен изменяться. Простейшее решение заключается в использовании буфера уксусная кислота — ацетат натрия для сохранения постоянства pH и изменении концентрации -этого буфера. Еще одно преимущество использования буфера в том, что мы можем изучать эффект групп как СО2Н, так и СОг - В обоих случаях результат почти всегда одинаков ни уксусная кислота, ни ацетат-ион в заметной степени не катализируют гидролиз простого субстрата типа этилацетата. Мы не смогли обнаружить даже самой реакции, не говоря уже о механизме. [c.459]

    Возможно использование в качестве катализатора этерификации соляной кислоты, однако активность ее ниже, чем серной кислоты. Помимо этого в присутствии соляной кислоты протекают побочные реакции гидролиза сложного эфира, а сам процесс осложняется необходимостью нейтр ализации катализатора и удаления его из сложного эфира путем водных промывок. При работе с соляной кислотой предъявляются повышенные требования к безопасному ведению процесса, так как возможно выделение газообразного хлористого водорода. [c.9]

    Когда катализатор в системе не один, возникает затруднение при определении различия между промотированным и смешанным катализатором. Пиз и Тейлор [222] предложили различать простую активацию одного вещества, играющего роль катализатора, др)тим веществом, которое само по себе не является катализатором реакции, или может быть небольшим количеством относительно активного вещес-ша, и коактивацию, наблюдаемую у некоторых катализаторов, когда действие каждого активного вещества, являющегося компонентом катализатора, усиливается вследствие их совместного присутствия., Термин коактивация рассматривается как родственный термину промотирование. В качестве примера коактивации можно указать синтез аммиака с железо-молибденовой смесью, оба элемента которой могут служить катализаторами для реакции но смесь равных частей железа и молибдена более эффективна, чем каждый компонент отдельно. В гомогенном катализе, например при гидролизе сложных эфиров, действие солей можно рассматривать как пример простой активации,так как соли сами по себе практически не действуют. Затруднение при определении понятия промотор состоит в том, что смесь двух веществ не во всех случаях много активнее составляющих ее компонентов. Мэкстед [182], изучая окисление аммиака и связывая Выходы с составом смешанных катализаторов (табл. 91), показал, что каталитическая активность не аддитивна составу. [c.358]

    Ацетаты и бензоаты спиртов и фенолов являются сложными эфирами и могут гидролизоваться щелочами с образованием ацетата или бензоата натрия и спиртового компонента. Удобным методом дезаце-тилирования является алкоголиз в присутствии иона алкоголята в качестве катализатора  [c.340]

    Применение алкоголятов. Если одним из компонентов альдольной конденсации является сложный эфир, то в качестве катализатора применяют обычно алкоголяты, так как в присутствии водных растворов щелочей эфиры претерпевают гидролиз. Классическим примером служит синтез эфиров коричной кислоты по Кляйзену, состоящий во взаимодействии алифатического сложного эфира с ароматическим альдегидом в присутствии этилата натрия. Этиловый эфир коричной кислоты получается таким путем из этилацетата и бензальдегида с 74%-ным выходом (СОП, 1, 548)  [c.433]


Смотреть страницы где упоминается термин Сложные эфиры, гидролиз в присутствии катализаторов: [c.161]    [c.369]    [c.203]    [c.364]    [c.159]    [c.309]    [c.53]    [c.451]   
Препаративная органическая химия (1959) -- [ c.541 ]

Препаративная органическая химия (1959) -- [ c.541 ]




ПОИСК





Смотрите так же термины и статьи:

Иод как катализатор эфира

Сложные гидролиз



© 2022 chem21.info Реклама на сайте