Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы тепловые

    Можно показать, что для изохорно-изотермических процессов тепловой эффект равен изменению внутренней энергии системы [c.182]

Рис. Х1У.2. а — соотношения между температурой для критических взрывных процессов теплового взрыва. Рис. Х1У.2. а — <a href="/info/790392">соотношения между</a> температурой для критических взрывных процессов теплового взрыва.

    Таким образом, при изохорном процессе тепловой эффект реакции равен изменению внутренней энергии системы, а при изобарном процессе — изменению энтальпии системы  [c.114]

    Образование комплексных соединений карбамида является экзотермическим процессом, тепловой эффект которого в расчете на один атом углерода (п) в молекуле н-алкана составляет 6,7 кДж. [c.271]

    Рассмотренные в этом разделе схемы трубопроводной обвязки ABO и теплообменных секций отдельных аппаратов являются типовыми. В процессе теплового, аэродинамического расчета и анализа каждая из типовых схем может быть улучшена путем проектирования дополнительных обводных трубопроводов, вспомогательных насосов, гидравлических затворов и промежуточных ресиверов, т. е. оборудования, которое обеспечивает высокую эффект-ивность использования ABO. [c.33]

    В случае физической адсорбции силы взаимодействия между адсорбированными молекулами и твердым телом имеют электростатический характер (вандервааль-совские силы и силы электростатической поляризации). Физическая адсорбция — экзотермический процесс. Тепловой эффект этого процесса близок к теплоте конденсации и равен 0,2—8 ккал/моль. Состояние равновесия при физической адсорбции достигается очень быстро даже при низких температурах. С увеличением температуры при состоянии равновесия -количество адсорбируемого вещества уменьшается, а выше критической температуры адсорбированного компонента вообще очень мало. [c.274]

    Эти соотношения показывают, что при постоянной температуре в изохорных процессах и в изобарных процессах тепловой эффект не зависит от пути перехода и однозначно определяется начальным и конечным состояниями системы. [c.183]

    Приведем некоторые примеры расчета энергетических эффектов процессов. Тепловой эффект растворения вещества [c.163]

    Процесс Тепловой эффект реакции Qq ккал кмоль 4 J5 5 Я О D5 Д- S СО О) н СЗ 5 ft) СО i-, Я а >. н со а. 0) С г RT -JE Максимальное адиабатическое повышение температуры в безразмерной форме де ,д. бад. X эф-S эф- Диаметр зерна см Средне- суточная производи- тельность процесса m/л  [c.477]

    Окисление распыленного жидкого топлива с аномально высокой скоростью и установление влияния этого процесса на самовоспламенение топлива требуют уточнения существующих схем теоретического расчета рабочего процесса тепловых двигателей. [c.137]

    Для большинства физико-химических расчетов необходимо знать теплоемкости веш,еств, участвуюш,их в процессе, тепловые эффекты процессов растворения, фазовых превращений и химических реакций. Измерение этих величин может быть произведено при помощи различных экспериментальных методов. При температурах, близких к комнатной (20—50 ), широко применяется калориметрический метод. [c.129]


    Виды физических термотехнологических процессов. Тепловая активация металлов и сплавов в печах достигается повышением их температуры в результате нагрева, который осуществляется с целью 1) тепловой подготовки металлов и сплавов перед пластической деформацией (ковка, штамповка, прокат, волочение) повышением подвижности дислокации 2) тепловой подготовки материалов перед последующей внепечной термической обработкой, т. е. охлаждением в различных средах с определенной скоростью для изменения кристаллической структуры в заданном направлении (рекристаллизация, закалка, отпуск и т. д.). [c.17]

    Как и во всех абсорбционных холодильных процессах, тепловые затраты в этом цикле также велики. Применение его экономически оправдано только в тех случаях, когда имеются возможности утилизации больших количеств тепла или недорогой источник топлива. [c.202]

    Этап 1. Выбор критерия оптимальности и ограничений. Для простоты возьмем в качестве критерия оптимальности величину площади теплопередающей поверхности Р. Она определяется в процессе теплового расчета аппарата, поэтому при вычислении такого критерия оптимальности не требуется предусматривать в программе дополнительных расчетов, как это было бы необходимо при применении универсального технико-экономического критерия. К тому же отпадает необходимость в подборе дополнительной исходной информации, связанной с расчетом экономических величин. [c.312]

    Тепловой расчет. В процессе теплового расчета на основе исходных данных и принятых значений независимых переменных текущего варианта определяется величина площади теплопередающей поверхности, необходимая в дальнейшем для определения размеров и массы аппарата. Кроме того, здесь же определяются скорости теплоносителей, используемые на следующей стадии расчета. [c.305]

    Нестационарные процессы в гетерогенных каталитических реакторах можно создавать, изменяя входные условия — давление, состав, температуру, нагрузку исходной реакционной смеси. В этой главе предполагается, что процессы на поверхности катализатора квазистационарны. Тогда нестационарные температурные и концентрационные поля в зернистом слое катализатора будут определяться кинетическими характеристиками квазистационарного процесса, тепловыми эффектами происходящих в слое химических реакций, процессами переноса, закономерностями изменения входных условий и инерционными свойствами реактора в целом. [c.124]

    Импульсы воспламенения характеризуются продолжительностью воздействия и энергией зажигания. Наибольшая продолжительность воздействия характерна для процессов теплового нагревания горючих веществ до температуры самовоспламенения, особенно при их самонагревании и самовозгорании. Наименьшую продолжительность воздействия имеют искры и искровые разряды, включая разряды статического и атмосферного электричества, — обычно десятые доли секунды. [c.202]

    Чтобы обеспечивать требуемую активность дымовых газов и достаточную тягу для их удаления, необходимо температуру дымовой трубы поддерживать на достаточно высоком уровне. Она не должна быть ниже точки росы водяных паров, содержащихся в дымовых газах, так как конденсация воды приводит к коррозии и разрушению кладки. Наконец, если в процессе сжигания осуществляется нагрев материала до определенной температуры, то, как правило, неизбежно удаление дымовых газов при повышенных температурах (тепло может передаваться только от тела с большей к телу с меньшей температурой). В периодическом процессе тепловая нагрузка по ходу процесса, особенно в конце его, снижается, однако тенденция выброса горячих уходящих газов остается. В непрерывных процессах иногда можно охлаждать дымовые газы, направляя их навстречу подаваемому на процесс холодному веществу. Но как бы ни ограничивали в каком-либо процессе температуру уходящих газов, всегда будет существовать минимально необходимый уровень ее, который приходится поддерживать. [c.107]

    ПРОЦЕССЫ ТЕПЛОВОЙ ОБРАБОТКИ ГЛИНЫ [c.282]

    Тепловую нагрузку определяют из уравнений теплового баланса аппарата. В зависимости от условий протекания процесса тепловой баланс может быть выражен уравнениями  [c.146]

    Образование комплексных соединений карбамида является экзотермическим процессом, тепловой эффект которого в расчете на один атом углерода в молекуле н-алкана составляет л 6,7 кДж. Зависимость между теплотой образования комплексов ДЯ При 25 С и мольным соотношением т практически линейна и выражается уравнением  [c.213]

    В настоящее время существуют шесть способов определения колеба -тельной температуры В, рассмотренных в /1,2/. Воспользуемся одним из них. При температуре, которую мы выберем в качестве колебательной, должен меняться механизм процесса теплового движения, а протекать этот процесс должен безактивационно. [c.168]

    Нарисованная выше картина спокойного псевдоожижения, однако, представляет известную идеализацию процесса применительно к монодисперсному слою. Реальный слой является всегда полидисперсным, частицы имеют неправильную форму, при посадке в слой и при выгрузке нагреваемых изделий может происходить стеснение слоя, наконец, в процессе тепловой обработки могут меняться размеры частиц. По аналогии с жидкостью можно условно говорить о вязкости кипящего слоя. Чем больше эта вязкость, тем труднее получить режим спокойного псевдоожижения. [c.134]


    Тепловые эффекты процесса. Тепловой эффект каталитического риформинга определяется глубиной протекания реакций дегидрирования нафтеновых углеводородов, дегидроциклизацией парафиновых углеводородов и гидрокрекингом, главным образом, парафиновых углеводородов. Остальные реакции в связи с малыми удельными их значениями в процессе в тепловом балансе могут не учитываться. Реакции дегидрирования и дегидроциклизацин протекают с поглощением тепла, реакции гидрокрекинга — с выделением тепла. Суммарный тепловой эффект будет определяться соотношением глубин протекания этих реакций [67, 68]. [c.40]

    Дальнейшее развитие теории двойного электрического слоя было дано в работах Фрумкина и его школы, Бокриса, Деванатхана, Есина, Мюллера, Парсонса, Эршлера и др. Наибольшее признание и распространение получила модель двойного электрического слоя, предложенная Грэмом (1947). Согласно Грэму, обкладка двойного электрического слоя, находящаяся в растворе, состоит не из двух, как предполагал Штерн, а из трех частей. Первая, считая от поверхности металла, называется внутренней плоскостью Гельмгольца, в ней находятся лишь поверхностно-активные ноны либо если их нет в растворе, молекулы растворителя-. В первом случае заряд плоскости равен <71, во втором — нулю ( 71 = 0), потенциал ее, отнесенный к раствору, обозначается ч( рез г 5). Следующая, удаленная от поверхности металла на расстояние, до которого могут подходить ионы (центры их заряда) в процессе теплового движения, называется внешней плоскостью Гельмгольца ее общий заряд, отнесенный к единице поверхности, равен /2, а потенциал плоскости -фг- [c.271]

    Эффективный способ устранения подвулканизации смесей — экранирование поверхности частиц соединения металла защитной пленкой. Например, описан способ повышения стабильности резиновых смесей за счет использования окиси цинка, покрытой сульфидом цинка, и окиси цинка, покрытой фосфатом цинка [8]. Применение органических кислот и их ангидридов в качестве замедлителей реакции солеобразования с окисью цинка снижает подвулканизацию смесей карбоксилсодержащих каучуков и одновременно существенно улучшает свойства вулканизатов [8]. Применение в качестве вулканизующих агентов алкоголятов алюминия, магния, а также различных перекисей двухвалентных металлов (Zn02, ВаОг и др.) позволяет существенно повысить стойкость резиновых смесей к подвулканизации [7]. Особенностью карбоксилсодержащих каучуков является повышенная стойкость в процессе теплового старения, очень высокое сопротивление разрастанию трещин (больше 300 тыс. циклов) [1]. По комплексу свойств карбоксилсодержащие каучуки представляют существенный интв--рес для различных областей применения.  [c.403]

    Я00—1500°С) и компенсации теплового эффекта реакции. Таким образом, термоокислительный пиролиз — пример химического процесса, тепловой баланс которого уравновешивается за счет одновременного проведения двух реакций с различным знаком теплового эффекта. [c.223]

    К л я м е р С. Д., Газ. пром., № 9, 38 (1971). Исследование процесса тепловой десорбции сероводорода из растворов этаноламинов. [c.271]

    J[юбы другие функции пе обращают в нуль правую часть уравнений (8.28). Вудучи заданными в качестве начальных функций распределения, они с течением времени будут приближаться к равновесным функциям. Этот процесс называется процессом тепловой релаксации. [c.44]

    Щелочной гидролиз хлоргидринов является необратимым экзотермическим процессом. Тепловые эффекты реакций (7.3) и (7.4) приблизительно равны б и 63 кДж/моль соответственно. [c.247]

    На рис. 5 приведена структурная схема математической модели. Переменные процесса, некоторые константы (коэффициенты теплопередачи) и сырьевые потоки являются входными параметрами, по ним проводят оптимизацию процесса. Тепловой и материальный балансы сводят с учетом предполагаемых выхода алкилата и поттребления изобутана. Из этих балансов находят условия реакции, которые затем используют при разработке реактора. Расчеты теплового и материального баланса повторяют в том случае, если характеристики разработанного реактора существенно отличаются от использованных при прежних расчетах. Затем рассчитывают значения управляющих переменных и используют их при оптимизации процесса. [c.208]

    Существование стабильной замкнутой системы я-электронов определяет химические свойства ароматических углеводородов. Например, бензол обладает суммарным эффектом сопряжения, равным 150,72 кДж/моль это значительно увеличивает стабильность бензольного кольца к реакциям присоединения, так как энергетически выгодными становятся лишь те процессы, тепловой эффект которых превышает упомянутую вел1ичину. Сопряжение в шестичленном кольце бензола приводит к то му, что в нем выравнены длины связей (0,139 нм), что соответствует промежуточному значению между длинами простой (0,154 ям) и двой- [c.15]

    При увеличении концентрации ПАВ на поверхности и работы его когезии (уменьшение коэффициента растекания), что может быть вызвано, например, увеличением длины углеводородного радикала (рост энергии дисперсионного взаимодействия), создаютс т условия для конденсации пленки. В поверхностном слое образу-ются отдельные островки плотного монослоя (рои молекул), которые в процессе теплового движения передвигаются по поверхности значительно медленнее, чем отдельные молекулы. Вследствие этого поверхностное натяжение раствора оказывается больше (поверхностное давление меньше), чем оно могло быть при той же концентрации ПАВ при образовании газообразной пленки. Состояние пленок, способных к конденсации, описывает уравнение (III. 127). Пленки, образованные при сплошном заполнении поверхностного слоя, называют конденсированными. Твердые пленки обладают структурой, гродобной структуре твердого тела. Такая пленка если и течет, то очень медленно. [c.161]

    Параметры процесса. Тепловой эффект реакции зависит главным образом от содержания в сырье нафтеновых углеводородов, так как именно реакции дегидрирования нафтенов сопровождаются интонсивным поглощением тепла. Если для парафинистого сырья отрицательный тепловой эффект составляет 295—364, то для нафтенового 410—670 кДж на 1 кг сырья. [c.249]

    Все эти величины являются функцией только объемного количества загрузки в единицу времени, диаметра КСП, числа его оборотов, его длины и угла естественного откоса. Если в процессе тепловой обработки проис.ходит изменение объема и угла естественного откоса при стабильности весовой величины количества загрузки, эти изменения нарастают по длине КСП и соответствующие коэффициенты в виде интегралов вводятся в общую формулу расчета и позволяют расчитать все показатели для любого сечения потока по длине КСП, а также расчитать необходимую мощность затрачиваемую на вращение КСП. [c.73]

    В процессе правки на многовалковых правильных машинах заготовка подвергается знакопеременному упругопластическому изгибу. В этом случае степень пластических деформаций в заготовке может быть значительно больше, чем при однократном изгибе. Процесс правки заготовок растяжением также связан с возникновением остаточных деформаций и напряжений. Процесс очистки хотя и не связан с изменением формы заготовок, но он также сопровождается возникновением остаточных деформаций и напряжений. Например, в процессе дробеструйной очистки поверхностные слои заготовок подвергаются локальному динамическому воздействию дроби, вызывающей на поверхностных слоях заготовок пластические деформации. Указанный факт является одной из причин повышенной скорости коррозии некоторых сталей в начальный момент коррозионных испытаний. При очистке абразивами и металлическими щетками тонкие поверхностные слои также получают пластические деформации сдвига. Однако, в силу того, что эти слои очень тонкие, то влиянием их на сопротивляемость механокоррозионному разрущению, видимо, можно пренебречь. Химическая очистка способствует наводороживанию поверхностного слоя проката [10]. Тепловая очистка основана на нагреве заготовок до температур 150-200°С с последующей механической очисткой. Если процесс тепловой очистки происходит в результате локального нагрева, то в отдельных зонах возможно появление остаточных деформаций. Процесс механической резки основан на создании в металле деформаций сдвига. В силу того, что между ножами имеется зазор, в зоне резания металл подвергается упругопластическому изгибу. В большинстве случаев после резки производят обработку кромок под сварку. В результате этого слой металла, в котором возникли деформации сдвига, в основном, удаляется. Тем не менее участки, подверженные изгибу, остаются. Процесс гибки и калибровки обечаек аналогичен процессу правки проката упруго- [c.51]


Библиография для Процессы тепловые: [c.130]    [c.171]    [c.190]   
Смотреть страницы где упоминается термин Процессы тепловые: [c.131]    [c.152]    [c.98]    [c.47]    [c.215]    [c.116]    [c.141]    [c.18]    [c.9]    [c.50]   
Методы оптимизации в химической технологии издание 2 (1975) -- [ c.65 ]

Основные процессы и аппараты химической технологии Изд.7 (1961) -- [ c.14 , c.280 ]

Машины и аппараты пищевых производств (2001) -- [ c.719 ]

Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.17 , c.183 ]

Основные процессы и аппараты химической технологии Издание 6 (1955) -- [ c.273 ]

Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности Издание 2 (1982) -- [ c.16 ]




ПОИСК







© 2025 chem21.info Реклама на сайте