Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация условия

    В случае ионизации условием применимости квазистационарной функции распределения является неравенство [c.122]

    Соответствующими расчетами показано, что достаточно резкий для точного титрования скачок на кривой титрования двух- и многоосновных кислот появляется только при условии, если отно-и.ение величин констант ионизации их по соответствующим ступе- [c.276]


    Если р >р", то на левом электроде идет ионизация хлора с образованием отрицательно заряженных ионов хлора, а на правом — их разряд с дальнейшим переходом молекул хлора в газовую фазу. Положительное электричество течет здесь ио внутренней цепи справа налево, и ио Международной конвенции э.д.с. этой системы должна быть отрицательной величиной. Из уравнения (9.4) следует, что для газов тииа водорода и хлора с ч = 2 э.д.с. газовой цеии при отношении давлений p jp"= 0 и ири 25° С составит около 0,030 В. Для кислородной газовой цепи [п=4) при тех же условиях э.д.с. равна 0,015 В. [c.197]

    Возможность протекания процесса растворения металла указывает на то, что в данных условиях скорость ионизации больше скорости разряда его ионов /мсутствие внешнего тока и при условии сохранения неизменной величины потенциала такое соотношение скоростей возможно в том случае, если скорость разряда водородных ионов на ту же величину больше скорости обратного [c.491]

    Возможность и степень распада на ионы определяется природой растворенного вещества и природой растворителя. Распад на ионы (вязан либо с явлением диссоциации (разъединения), либо с явле-пием ионизации (образования ионов). Так, пр,и растворении ионных соединений (поскольку они уже состоят из Ионов) имеет место диссоциация. Роль растворителя в этом случае заключается в создании условий для разъединения ионов противоположного знака и в препятствовании процессу молизации. Диссоциация ионных соединений протекает тем легче, чем полярнее молекулы растворителя. При распаде ковалентных соединений на ионы происходит гетеролитиче-ский разрыв связи, т. е. ионизация. [c.128]

    Молекула сульфида водорода H2S имеет угловую форму ( HSH = = 92°, (isH = 0,133 нм), поэтому она полярна (ц = 0,34 Кл м). Способность образовывать водородные связи у HjS выражена слабее, чем у НзО. Поэтому сероводород в обычных условиях — газ (т. пл.— 85,6°С, т. кип. — 60,75°С). Собственная ионизация H2S в жидком состоянии [c.325]


    Здесь в условиях глубокого вакуума под действием электронов, излучаемых катодом, молекулы вещества подвергаются ионизации и диссоциации. [c.261]

    В молекуле любого органического соединения, не имеющего ионизованных или существенно поляризованных атомов или групп, атомы водорода стремятся расположиться в пространстве так, чтобы расстояния между ними были наибольшими без существенной деформации валентных углов. Поскольку присутствие полярных атомов в углеводородах сравнительно редкое явление, а ионизация наблюдается только в некоторых специфических условиях, в этих соединениях роль конформационных эффектов особенно велика и их обязательно надо учитывать. Однако чтобы избежать упрощений, следует помнить, что указанному выше стремлению к переходу в наиболее выгодную конформацию препятствует тепловое движение, которое возвращает большую или меньшую часть молекул на более высокие энергетические уровни, т. е. переводит их в менее выгодные конформации. Это тем более справедливо, чем выше температура. [c.38]

    При несоблюдении этого условия образование МО становится затруднительным или полностью исключается. Наиболее полное [взаимное перекрывание АО способствует образованию в молекуле / прочной связи между атомами. Энергетической характеристикой МО служит ее потенциал ионизации (с. 48), который соответствует энергии, необходимой для отрыва от МО электрона. [c.58]

    Хлорноватистая кислота обладает высокой константой диссоциации, вследствие чего проблема подавления ионизации для нее практически не возникает. Каталитическая константа скорости k составляет около 5000 л1 моль-сек) при 25 °С, поэтому константу скорости реакции первого порядка можно резко изменять, добавляя относительно малые количества гипохлорита. Однако константа скорости сильно зависит от состава раствора и должна быть специально измерена для каждого используемого раствора абсорбента. Даже при соблюдении этого условия, в каждом случае необходима оценка того, не изменяется ли состав раствора у поверхности в ходе абсорбционного процесса, что отличало бы скорость реакции здесь от скорости в основной массе жидкости. [c.245]

    Очень большая замедленность анодной реакции ионизации металла имеет место при возникновении анодной пассивности (см. с. 305). Анодная поляризация металлов в определенных условиях может облегчать переход металлов в пассивное состояние (образование на металле первичных фазовых или адсорбционных защитных пленок), что сопровождается резким торможением анодного процесса с соответствующим самопроизвольным падением плотности тока и значительным смещением потенциала электрода в положительную сторону (участок ВЕ на рис. 137) до значений, достаточных для протекания нового анодного процесса, обычно выделения кислорода [участок EF кривой (Ко обр E>EF на рис. 137]. Значение этого вида анодной поляризации рассчитать нельзя и его берут обычно из опытных данных. [c.197]


    Анодная пассивность. Поляризация анода может быть также вызвана образованием пассивных пленок на поверхности металла. При определенных условиях (при наличии в растворе окислителей и отсутствии ионов-активаторов) анодная поляризация облегчает наступление пассивного состояния и ионизация металла сильно тормозится. Этот процесс сопровождается значительной анодной поляризацией Д а, которая для некоторых металлов может превышать значение 1 в. [c.34]

    Свойства ионитов зависят от характера ионо генных групп (валентности, объема, расположения степени ионизации и т, д.), от строения макромо лекул полимера (числа поперечных связей и т. д.) а также условий их получения, соотношения исход ных комнонентов, температуры, продолжительности и т. п. [c.90]

    Растворители основного характера благодаря наличию свободной электронной пары способны сольватировать или связывать электрофильные реагенты и тем самым замедлять реакцию. Растворители этого типа применяют в случае необходимости изменения условий реакции. Таким образом, значения рКк и рКо могут существенно изменяться в случае присутствия растворителей. Даже апротонные растворители взаимодействуют с- катализаторами и за счет образования координационных связей изменяют их активность. Сольватирующая способность растворителя сказывается на поляризации или ионизации акцептора. [c.65]

    При малой степени ионизации условие изобаричности имеет вид [c.246]

    Например, по этой теории лакмус содержит особунЬ (азолитми-новую) кислоту, неионизированные молекулы которой красного, а анионы — синего цвета. Условимся всякую индикаторную кислоту обозначать схематически через Hind, а анионы ее — через Ind". Тогда ионизацию лакмуса можно представить следующим уравнением  [c.239]

    Из тождества кривых титрования можно сделать следующий важный вывод титрование солей слабых кислот типа NaAn сильными кислотами возможно только при условии, если соответствующая слабая кислота НАп имеет достаточно малую константу ионизации (т. е. достаточно большой рК). Действительно, выше указывалось, что если р/(нАп = 9, т. е. /Снап = Ю , то соответствующую соль можно точно оттитровать, подобно основанию с р осн = 5. [c.285]

    Следовательно, присутствие серебра ы цинке должио увеличить скорость его коррозии. При выбранных условиях эта скорость возрастает в три с половиной раза. Однако увеличение скорости растворения не является единственным результатом загрязнения цинка серебром. Меняется и сам харакгер коррозии. Действительно, если раньше весь водород выделялся на поверхности цинка, т. е. на той же самой поверхности, где пр(Эисходило растворение (ионизация) цинка, то теперь, как это легко определить при помощи уравнения (24.23), только 28% водорода выделяется на цинке, а остальные 72% — на серебре. Серебро, обладая электроположительным потенциалом, не будет растворяться на нем возможен [c.495]

    Каждое вещество в данном растворителе и при данных условиях характеризуется определенной степенью ионизации. Степенью ионизации вещества в растворе называется отношение числа молей ионизированного вещества к оби ему числу молей растворенного. Степешз ионизации в основном определяется электронно-донорными и электронно-акцепторными свойствами растворенного вещества и растворителя. Для многих соединений наиболее сильно ионизирующими растворителями являются вода, жидкие аммиак и фторид водорода. Эти соединения состоят из дипольных молекул и склонны к донорно-акцепторному взаимодействию и образованию водородной связи. Например, НС1 хорошо ионизируется в воде, что связано с превращением водородной связи Н2О. .. H I в донорно-акцепторную [Н гО—Н]+  [c.128]

    У бериллия (ls 2s ) по сравнению с бором ( s 2s 2p ) в соответствии с увеличением радиуса атома и уменьшением числа валентных электронов неметаллические признаки проявляются слабее, а металлические усиливаются. Бериллий обладает более высокими энергиями ионизации атома (II = 9,32 эВ, /а == 18,21 эВ), чем остальные s-элементы II группы. В то же время он во многом сходен с алюминием (диагональное сходство в периодической системе) и является типичным амфотерным эле.ментом в обычных условиях он простых ионов не образует для него характерны комплексные ионы как катионного, так и анионного типа. Во всех устойчивых соединениях степень окисления бериллия -f2. Для Ве (II) наиболее характерно координационное число 4 (зр -гибри-Д1(зация валентных орбиталей). [c.470]

    Кгльций Са, стронций Sr, барий Ва и радий Ra в отличие от ранее рассмотренных элементов имеют относительно большие атомные радиусы и низкие значения потенциалов ионизации (см. с. 470). Поэтому в условиях химического взаимодействия кальций и его аналоги легко терякт валентные электроны и образуют простые ионы Поскольку ионы имеют электронную конфигурацию и большие размеры (т. е. слабо поляризуют), комплексные ионы с неорганическими ли-гандали у элементов подгруппы кальция неустойчивы. [c.479]

    На относительную трудность ионизации галоидных алкилов в условиях реакции Фриделя—Крафтса указывают результаты, получениые Фэрб- [c.434]

    Источником энергии в разряде является электрическое поле, сообщающее ускорение в первую очередь свободным электронам, которые передают свою энергию молекулам газа посредством упругих и неупругих ударов. В результате неупругих ударов происходит возбуждение и ионизация молекул, а также диссоциация их на свободные ради1 алы или атомы. Принципиально любая нз этих частиц, т. е. возбужденная молекула, ион и свободный радикал, могут являться химически активной частицей, участвующей в первичном элементарном акте. За первичным актом могут последовать, в зависимости от условий, различные вторичные реакции, причем последние могут развиваться не только в самой плазме разряда, но и на стенках разрядной трубки. Таким образом, весьма сложная задача изучения механизма реакций в разряде сводится, во-первых, к выяснению природы первично активной химической частицы и характера первичного элементарного акта и, во-вторых, к изучению возможных вторичных реакций. Следует иметь в виду, что плазма разряда может быть изотермической и неизотермической. В изотермической плазме температуры электронного и [c.250]

    Катализатором, наиболее широко используемым в промышленности, является ион арсенита, As(0H)a0 , который вводится в раствор карбоната калия, используемый для абсорбции СОа, в виде арсенита калия или AS2O3. Константа скорости для арсенита составляет около 5000 л1 моль -сек) при 25 °С, а энергия активации— около 5700 кал/моль. Так как каталитическим действием обладает лишь анион, а не недиссоциированная мышьяковистая кислота, то значение константы [ at] скорости реакции первого порядка будет уменьшаться при снижении pH до уровня, при котором диссоциация будет частично подавляться. Это может происходить в карбонат-бикарбонатных растворах при обычных температурах. Однако в промышленных условиях абсорбцию СОа растворами поташа проводят чаще всего при температуре около 100 °С. В таких условиях константа диссоциации, видимо, достаточно велика, чтобы обеспечить практически полную ионизацию арсенита во всех участках абсорбционного аппарата. Шарма и Данквертс дают информацию о влия- [c.243]

    Ионная связь образуется между атомами с очень сильно отличающимися энергиями ионизации и сродством к электрону. При таких условиях один из двух атомов передает один или несколько валентных электронов своему партнеру. Например, атом Na настолько отличается по свойствам от атома С1, что в Na l атомы не в состоянии равномерно обобществлять между собой электроны. Атом Na имеет относительно пебольщую ЭИ, (498 кДж моль и малое СЭ (117 кДж моль ). Поэтому в присутствии атома с большим СЭ он легко образует ион Na . Атом хлора имеет СЭ 356 кДж моль и ЭИ, 1255 кДж моль К Он с трудом отдает свой электрон, но зато весьма склонен приобретать дополнительный электрон. В результате образуется двухатомная молекула Na l с ионной связью, обладающая структурой Na С1 , в которой валентный Зх-электрон Na перешел на вакантную Зр-орбиталь С1. [c.403]

    При отсутствии пассивности скорость коррозии металлов в условиях сильной аэрации определяется в основном перенапряжением ионизации кислорода. В этом случае скорость коррозии металлов сильно зависит от природы и содержания катодных примесей или структурных составляющих чем ниже перенапряжение ионизации кислорода на микрокатодах и чем выше содержание этих микрокатодов, тем больше скорость катодной реакции [см. уравнения (488а) и (4886)], а следовательно, и коррозионного процесса. [c.243]

    При выборе ингибиторов коррозии металлов большое значение имеет заряд поверхности металла в данном электролите, т. е. его потенциал ф в шкале нулевых точек (см. с. 164). Если поверхность металла заряжена положительно (т. е. ф > О, например, у РЬ, Сё, Г1), это способствует адсорбции анионов, которые, образуя на металле анионную сетку , снижают перенапряжение водорода и ионизации металла, что нежелательно, так как приводит к ускорению коррозии. Замедляюш,ее действие могут в этих условиях оказать лишь анионные добавки экранирующего действия, а замедлители катионного типа не применимы. [c.348]

    Для количественной характеристики соотношения диссоциированных и недиссоциированных молекул электролита при данных условиях пользуются понятием степени электролитической диссоциации (ионизации). Степень элек- юлитической диссоциации а равна отношению числа молекул, распавшихся на ноны, к общему числу молекул электролита, введенных в раствор. Иными словами, а — это доля молекул электролита, распавшихся па ионы. [c.247]

    С галогенами водород связывает гораздо большее число признаков газообразное состояние (при обычных условиях), двух-атомность, ковалентность связи в молекуле Нг, наличие в большинстве соединений полярных связей, например в НС1 в отличие от Na l, неэлектропроводность (как в газообразном, так и в жидком и твердом состояниях), близость энергий ионизации /н и /г. в то время как /м С/н. К перечисленным признакам можно прибавить и другие, в частности сходство гидридов с галогенидами, закономерное изменение свойств в ряду Н — At (рис. 3.77). Можно привести много других примеров линейной взаимосвязи свойств в ряду Нг —Гг, аналогичной показанной на рис. 3.77. В ряду водород — щелочные металлы подобные зависимости обычно не наблюдаются. [c.463]

    Камерно-поточный способ отличается отсутствием складской дообработни, поэтому санитарно-гигиенические условия а заводе более благоприятны. По этому способу двойной суперфосфат непосредственно после камер подвергается гранулированию, сушке, сортировке гранул и ам,ионизации. Исключение операции складского дозревания возможно ири более тонком измельчении фосфорита. [c.242]

    I см поверхности жидкости в минуту в нормальных условиях) ionization коэффициент ионизации L- onversion коэффициент конверсии на L-оболочке [c.99]

    Теплота образования (АЯ ) газообразных ионов определяется обычно при условном допущении, что АЯ электрона равна нулю, т. е. АЯ° процесса ионизации относится целиком к теплоте образования иона. Пересчеты между О и 298,15 К выполняются при условии, что Я298 — Яо ионизированной или неионизированной молекул одинаковы, а для электрона эта величина принимается равной 1,481 ккал/моль. [c.316]

    В частности, все процессы коррозии технических конструкционных металлов, как в нейтральных растворах электролитов, так и в атмосферных условиях, а также многие процессы растнорения металлов в слабокислых растворах в присутствии кислорода идут главным образом за счет катодного процесса ионизации 1Л1слорода. [c.38]

    Для этой реакции характерно превращение ковалентной спязи исходной молекулы в ионную связь конечной молекулы. Тогда в качестве нулевого приближения можно рассматривать пересекающиеся поверхности, одиа из которых отвечает взаимодействию атома М с ковалентной люлекулой Хг ( ковалентная поверхность), а другая — взаимодействию иона с X —X ( ионная поверхность). Линия пересечения этих поверхностей определяется условием компенсации разности потенциала ионизации атома М и сродства к электрону молекулы Xg кулоновским притяжением между М и парой Х —Х. Для таких реакций типичные величины координаты точки пересечения составляют 5—10 А. На столь больших расстояниях взаимодействие меясду ионным и ковалентным состояниями оказывается таким малым, что приближенно истинная поверхность потенциальиой энергии может быть построена из участков ковалентной и ионпой поверхностей, линия пересечения которых является линией пересечения диабатических поверхностей потенциальной энергии [98]. [c.68]


Смотреть страницы где упоминается термин Ионизация условия: [c.110]    [c.52]    [c.70]    [c.87]    [c.188]    [c.542]    [c.335]    [c.337]    [c.339]    [c.360]    [c.15]    [c.45]    [c.168]    [c.139]    [c.58]    [c.438]    [c.118]   
Теории кислот и оснований (1949) -- [ c.130 ]





ПОИСК







© 2020 chem21.info Реклама на сайте