Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активные центры на цеолитах

    При работе на алюмоплатиновых катализаторах низкотемпературной изомеризации, в которых массовая доля хлора достигает 12%, присутствие воды в сырье приводит к необратимому отравлению катализатора из-за дезактивации активных центров. Рекомендуется ограничивать содержание воды в сырье процессов низкотемпературной изомеризации (1- 10) 10" % [19, с.82-100 103]. При гидроочистке сырья основное количество растворенной воды удаляется в отпарной колонне вместе с сероводородом, Остаточное количество воды и сернистых соединений удаляют с помощью молекулярных сит. Обычно используют два слоя цеолитов — NaA и NaX. На цеолите NaA происходит поглощение воды и остаточного H2S, но углеводороды не заполняют полости этого цеолита. Цеолиты NaX служат для очистки от сернистых соединений, главным образом меркаптанов. Соотношение загрузки цеолитов двух типов 1 1. [c.91]


    Принципиально важным является выяснить, от какого свойства катионов зависит гидрирующая активность цеолитов, так как этот вопрос тесно связан с механизмом действия цеолитов в реакциях гидрирования и с природой их каталитической активности в этих реакциях, Так, можно предполагать, что если при адсорбции молекул реагентов на цеолитах и в ходе их активации на активных центрах катализатора происходит лишь деформация реагирующих связей под действием электростатического поля катионов, то каталитическая активность будет определяться величиной электростатического потенциала катионов. Это следует из того, что сила взаимодействия адсорбированной молекулы с активным центром катализатора зависит от силы взаимодействия наведенного диполя с катионом металла. С другой стороны, если при адсорбции будет происходить более сильное взаимодействие между адсорбированной молекулой реагента и катионом металла, в результате чего будет осуществляться переход электрона от молекулы к катиону металла в цеолите, то в этом случае следует ожидать зависимости каталитической активности от величины сродства электрона к катиону. [c.57]

    При адсорбции молекул, способных к специфическому взаимодействия с катионами при малых давлениях сорбата в паровой фазе, адсорбция в основном определяется именно этим членом уравнения. Если предположить, что число активных центров в цеолите сравнительно невелико и между молекулами адсорбата и катионами образуется прочная связь, то для расчета адсорбции на активных центрах можно использовать модель локализованной сорбции по Ленгмюру. Поэтому в общем случае уравнение изотермы адсорбции будет иметь вид [c.260]

    Вспомогательные добавки улучшают или придают некоторые специфические физико-химические и механические свойства цеолитсодержащих алюмосиликатных катализаторов (ЦСК) крекинга. ЦСК без вспомогательных добавок не могут полностью удовлетворять всему комплексу требований, предъявляемых к современным промышленным катализаторам крекинга. Так, матрица и активный компонент - цеолит, входящий в состав ЦСК, обладают только кислотной активностью, в то время как для организации интенсивной регенерации закоксованного катализатора требуется наличие металлических центров, катализирующих реакции окислительно-восста-новительного типа. Современные и перспективные процессы каталитического крекинга требуют улучшения и оптимизации дополнительно таких свойств ЦСК, как износостойкость, механическая прочность, текучесть, стойкость к отравляющему воздействию металлов сырья и т.д., а также тех свойств, которые обеспечивают экологическую чистоту газовых выбросов в атмосферу. [c.453]


    В бифункциональном катализаторе Рг-цеолит присутствуют следующие активные центры изомеризации и гидрокрекинга парафиновых углеводородов  [c.121]

    Для оценки катализаторов важны три фактора, относящиеся к активным центрам число центров в единице массы, соотношение числа центров В и L и кислотная сила катализатора. Теоретически число центров В связано с числом центров L в цеолите, но на практике имеется много факторов (степень кристалличности, уровень обмена, тип катиона), искажающие эту закономерность. Соотношение числа центров В kL зависит от условий предварительной обработки цеолита. Обычно нагрев катализаторов до температуры 700 С приводит к исчезновению центров В при одновременном увеличении числа центров L. Эти превращения сопровождаются отщеплением воды и, есг конечная температура не превышает предельной величины, то центры В можно регенерировать путем добавления воды при низкой температуре. На практике это означает, что соотношение числа центров В и L, так же как и все каталитические свойства, связанные с этим соотношением, зависят от условий проведения процесса в реакторе. [c.110]

    Поэтому, прежде чем они смогут сорбироваться на активных центрах катализатора, эти крупные молекулы должны подвергнуться предварительному крекированию на поверхности окружающей цеолит матрицы. [c.261]

    Как указывалось выше, одним из основных факторов, от которых зависит гидрирующая активность цеолитов, является степень декатионирования, или концентрация катионов в цеолите. Исследования показали [60], что каталитическая активность NaM в гидрировании бензола снижается линейно оо степенью декатионирования этого цеолита (рис. 1.4). Поскольку реакция проводилась в условиях невысоких превращений бензола, то указанные на рисунке выходы продукта можно считать пропорциональными активности катализатора (скорости реакции в выбранных условиях). Такая линейная зависимость свидетельствует об однородности и одинаковой доступности активных центров катализатора. [c.18]

    Сформулированные положения стимулировали постановку дальнейших работ с целью изучения возможности замены существующего промьппленного способа получения высокооктановых компонентов бензинов (изооктана) путем алкилировании изобутана бутиленами, в котором в качестве катализаторов используются серная и фтористоводородная кислоты. Совместно с К. И. Патриляком исследованы особенности процесса алкилирования изобутана бутиленами на поликатионно-декатионированном цеолите типа X. Установлено существование периода разработки катализатора, зависимости протекания процесса от условий активации катализатора, пульсирующего характера процесса в отдельных зонах катализатора по высоте слоя, неодинаковой алкилирующей способности бутиленов, изомеризации бутилена-1 в бутилен-2. Развиты теоретические представления о природе активных центров Льюиса и связанных с ними физико-химических свойствах поликатиопно-декатионированных цеолитов типа X и . Эти работы послужили научной основой получении ияооктана алкилированием изобутапа бутиленами в присутствии цеолитных катализаторов. Промышленная реализация процесса позволит перевести алкилирование в число процессов с безотходной технологией. [c.15]

    Для рещения вопроса об участии катионов Na в цеолите NaY в реакции дегидрирования циклогексадиена-1,4 исследовано влияние адсорбции пиридина и обработки цеолита щелочью, позволяющей устранить катионный дефицит. Было найдено, что обработка цеолита раствором щелочи не изменяет его активности в дегидрировании циклогексадиена-1,4, а в результате адсорбции пиридина снижается активность как исходного, так и обработанного щелочью цеолита. Из зтого следует, что в дегидрировании циклогексадиена-1.4 на одновалентных катионных формах цеолита активными центрами могут быть катионы щелочного металла. [c.98]

    По данным 1[96] причина закоксовывания в следующем тиолы в условиях регенерации разлагаются с образованием се> роводорода, сульфидов и непредельных соединений, которые по-лимеризуются и накапливаются в адсорбентах. По мере отравления каталитически активных центров адсорбента скорость разложения амина и гликоля снижается. Максимальное содержание углеродистых отложений в цеолите составило 15% (масс.). [c.124]

    Аморфный алюмосиликат, в котором распределен цеолит, обладает собственной активностью. Каталитически активными центрами алюмосиликатов являются как кислоты Бренстеда, так и Льюиса. В качестве кислоты Бренстеда может выступать протон, образующийся из воды, хемосорбированной координационно ненасыщенным атомом алюминия (а), протон гидроксильной группы, связанной с атомом алюминия (б) или кремния (в)  [c.341]


    Обратимыми ядами для алюмосиликатных катализаторов являются азотистые основания они прочно адсорбируются на кислотны х активных центрах и блокируют их. При одинаковых основных свойствах большее дезактивирующее воздействие на катали — затор оказывают азотистые соединения большей молекулярной массы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Цеолит — содер ясащие катализаторы, благодаря молекулярно — ситовым свой— ствам, отравляются азотом в значительно меньшей степени, чем аморфные алюмосиликатные. [c.105]

    Принцип отбора материала. Чтобы достаточно четко представить себе механизм превращения углеводородов на определенном цеолите, необходимо установить 1) структуру активного центра цеолита, [c.6]

    Анжелл и Шеффер [135] исследовали методом ИК-спектроскопии цеолиты Y, содержащие двузарядные катионы, и установили, что у образцов, вакуумированных при медленном подъеме температуры до 500°С, полоса при 3650 см в спектрах более интенсивна, чем у тех же цеолитов, дегидратированных быстрым нагреванием. Отсюда следует, что дегидратация и гидролиз катионов протекают одновременно и способностью генерировать ОН-группы обладает только часть катионов. Таким образом, оказалось, что и в этом случае число каталитически,активных центров зависи от способа активации образцов. Найдено также, что напуск паров HjO при 260° С на активированный цеолит aY, содержащий адсорбированный пиридин, приводит к росту концентрации иона пиридиния [60]. Промотирующее влияние воды следует учитывать при проведении каталитических опытов на регенерированных катализаторах, т, е. на образцах, подвергнутых термопаровой обработке (см. также [149]). Анжелл и Шеффер [135] обнаружили небольшое изменение величины 7он У различных катионов в ряду NaY (некоторый дефицит катионов), BaY, aY, MgY и HY уон равна 3652, 3647, 3645, 3643 и 3636 см" соответственно. Авторы работы [137] попытались связать величину Уон Для данного катиона с его сродством к электрону. Представление о такой корреляции Ричардсон [85] использовал для обоснования предположения о том, что кислотность ОН-групп зависит от поляризующего действия катионов, подобно тому как в водородных формах кислотность гидроксильных групп увеличивается под влиянием соседних льюисовских центров. Кроме того, он предложил отнести полосу при 3650 см" к ОН-группам различной [c.42]

    При добавлении безводного НС1 в исходное сырье наблюдалось обратимое появление активности в крекинге кумола при 220—350°С на цеолите NaY [220]. Предложена следующая схема образования активных центров  [c.63]

    Ввиду таких серьезных преимуществ при применении гидрокрекинга для получения легких нефтепродуктов нужно использовать катализаторы с высокой кислотной активностью. Такие катализаторы очень сильно отравляются азотистыми основаниями в результате блокирования кислотных активных центров, поэтому применять их можно для переработки дистиллятных продуктов с низким содержанием азота. При значительном содержании в сырье азотистых соединений его нужно предварительно очищать от азота и гидрокрекинг проводить в две ступени. В первой ступени в основном проходят гидроочистка и неглубокий гидрокрекинг, при котором гидрируются полициклические ароматические углеводороды. Для этого используют устойчивые к действию азота и серы катализаторы гидроочистки. Во второй ступени гидроочищенное и отчасти гидрокрекированное сырье перерабатывают на катализаторе с высокой кислотной активностью. Из опубликованных данных известно применение в качестве катализаторов гидрокрекинга смеси сульфидов никеля и вольфрама (6% N1 и 19% У), нанесенных на алюмосиликат, палладия (0,5%) на цеолите типа У, платины на цеолите. Катализаторы на основе цеолитов обладают повышенной стойкостью к действию соединений азота и весьма перспективны. [c.298]

    Под влиянием термопаровой обработки в цеолите происходят значительные изменения состава активных центров (см. рис.36). Так, резко снижается пик, характерный для десорбции аммиака, адсорбированного на двухвалентных катионах (кривая I, температура 220-350°С), и появляются два новых пика (кривая 3). Пик при температуре 170-220°С можно объяснить десорбцией аммиака, адсорбированного на кислотных (2Г-группах (центры Бренстеда) [6]. По аналогии с пиком десорбции аммиака, адсорбированного цеолитом МаА (кривая 4, температура 250-300°С) на катионах N0 , локализованных в области восьмичленных к1 слородных колец, образовавшийся под действием термопаровой обработки пик в интервале температур 250-300°С [c.36]

    Правильность данного механизма можно подтвердить кривыми 2 и 5 (см. рис.36). При контакте цеолита, подвергнутого термопаровой обработке с дистиллированной водой (кривая 2), происходит резкое увеличение числа активных центров, ответственных за десорбцию аммиака в интервале температур 170-220°С, и уменьшение количества аммиака, десорбируемого при температурах 250-300°С. По-видимоцу, в этом случае гидрокси- сатион замещается в цеолите на протеи, образовавшийся в результате диссоциации молекул воды, и выводится в водную среду в виде гидроксида магния. Химический анализ дистиллированной воды после контакта с исследуемым образцом цеолита показал наличие в ней 55 мг/л ионов и увеличение pH с 7,0 до 9,5. [c.38]

    При сорбции из бинарных жидких растворов на кристаллическом цеолите СаА, когда в силу геометрических размеров в кристаллы проникают молекулы лишь одного компонента, большую роль играет растворитель. Любой растворитель, адсорбируясь на поверхности кристалла цеолита, является конкурентом основного компонента. В зависимости от природы растворителя и его концентрации доля поверхности, занятая компонентом, проникающим в полости цеолита, может зЕтачительно меняться, что приводит к изменению скорости адсорбции. При сорбции из растворов внешняя поверхность цеолита находится в равновесии с раствором, при этом часть поверхности занята молекулами сорбирующегося вещества, а другая часть — молекулами растворителя. Доля поверхности, занятая каждым из компонентов, определяется их адсорбционными свойствами. Так как внешняя поверхность кристаллов цеолита полярна, то активность растворителей должна увеличиваться с ростом их полярности и способности к специфическим взаимодействиям с поверхностными активными центрами. [c.284]

    В случае цеолитов NaA и NaM наблюдается медленный рост активности с температурой обработки в интервале 200-500 С. Выход изопентана при зтом изменяется от 1—8 до 24-30%. По-видимому, с повышением температуры прокаливания цеолита увеличивается степень его дегидратации, в результате чего облегчается доступ реагирующих молекул к активным центрам катализатора, расположенным во внутрикристаллических каналах и полостях цеолита. Начиная с температуры обработки 400 С и вьпие цеолит NaY активнее NaA и NaM (см. рис. 1.18,л). Это совпадает с приведенными выше данными (см. табл. 1.7), где было показано, что из Na4j)opM различных цеолитов наиболее активным в гидрировании 2-метил бутена-2 был NaY. [c.34]

    В табл. 17-5 приведены данные по совместной адсорбции этилена и двуокиси углерода на цеолите СаА [23]. Коэффициент разделения при 25 °С, атмосферном давлении и соотношении компонентов в газовой фазе 1 1 составляет 3,75. Высокая энергия фазового перехода при ноглощ ении двуокиси углерода вызывается взаимодействием квадруполя молекулы с активными центрами — катионами цеолита [24]. [c.353]

    Как следует пз рисунка, при содержании в цеолите углеродистых отложений в количестве более 12 % мае. каталитическая активность цеолита снижается, количество сульфида водорода в продуктах разложения уменьшается, диэтилсульфида нарастает, степень разложения этилмеркаитаиа снижается. Крекинг этилмеркаитаиа сопровождается закоксовывапием цеолита, скорость которого наиболее велика в начальный период, и замедляется по мере отравления активных центров. При содержании в цеолите отложений в количестве 15 % мае. дальнейшее пх накопление прекращается. [c.403]

    Подтверждено, что поливалентные катионы не только оказывают влияние на подвижность водорода гидроксильных групп - активных, центров катализатора, но при известных условиях могут непосредственно участвовать в катализе. В результате согласованного воздействия кальция и водорода на ароматическую молекулу возникают ионы нарбония. При адсорбции изоамилбензола на цеолите возникают затруднения геометрического характера для образования исходных ионов [63]. [c.42]

    B. Грязнойа (Московский государственный университет им. М. В. Ломоносова). Гетерогенный 1<атализ является важным источником информации о пористой структуре катализаторов. Нами совместно с Г. В. Цицишвили и сотр. было обнаружено, что даже из одних и тех же исходных веществ можно получить примерно одинаковые по составу, но сильно отличающиеся по активности катализаторы. Так, родиевые цеолиты типа Y со степенью обмена на ионы родия 22 и 25% после восстановления их водородом при 400° С имеют одинаковые удерживаемые объемы по бензолу, но резко различную каталитическую активность по гидрогенизации бензола. Поскольку экспериментальная энергия активации гидрогенизации бензола на этих катализаторах практически одинакова, можно считать, что природа их активных центров близка, а различие в активности этих образцов вызвано разным числом и различной доступностью активных центров из-за неодинакового распределения их в цеолите. [c.335]

    Об изменениях энергетической характеристики активных центров в процессе термообработки говорит изменение экспериментальной энергии активации Е реакции гидрогенизации на цеолите NaNiX-59 (для восстановленного в течение 2,5 ч Е = 17,6 в течение 1,5 — 12,1 после закаливания — 24,2 кДж/моль). [c.335]

    Для системы цеолит NaX — метанол величина 0w получается также равной 0,1. Так как молекулы метанола не могут проникнуть внутрь содалитных кубооктаэдров цеолита, то, во-первых, область W образуется молекулами, адсорбированными на активных центрах, а, во-вторых, измерения ЯМР не указывают на проникновение молекул воды внутрь содалитных кубооктаэдров. Все изложенные нами результаты измерений хорошо воспроизводимы. [c.227]

    Начиная с 60-х годов нашего века экспериментально было показано [178], что цеолиты определенного состава и строения проявляют высокую активность в реакциях алкилирования бензола пропиленом или другими алкилирующими реагентами и в реакциях превращения других углеводородов. В работах [179, 180] приведены результаты сравнительного изучения природы активных центров в цеолите X кальциевой формы и алюмосиликатных природных катализаторах типа силлиманита. Показано, что крекинг изопропилбензола на цеолите и силлиманите проходит с одинаковыми энергиями активации (75 312 Дж/моль) и предэкспоненциальными множителями (5,3 моль/гХ 1Хмин). Это позволило авторам работы [180] допустить, что в катализе превращения углеводородов — алкилирование, крекинг и другое как в цеолитах, так и в природных и синтетических алюмосиликатах. [c.157]

    Диаметр окон (входных отверстий) этих больших полостей составляет у цеолитов типа X и У 0,75—1,0 нм. Таким образом, внутренняя поверхность этих цеолитов доступна для многих органических молекул. Для сравнения следует иметь в виду, что критический диаметр молекулы н-гексана равен 0,49 нм, метилпентана — 0,56 нм и бензола — 0,66 нм. Окна цеолита типа А гораздо меньше и в зависимости от природы содержащихся в цеолите катионов равны от 0,3 до 0,5 нм (для калиевой формы 0,3 нм, для натриевой формы 0,4 нм, для кальциевой формы0,5 нм). СаА-цеолит используется в процессе Лейна-Парекс селективной адсорбции я-парафинов из их смесей с изопарафинами. Если модифицировать этот цеолит, создав в нем активные центры крекинга, то из смеси углеводородов можно селективно подвергнуть крекингу н-парафины. Такой принцип осуществлен в процессе селектоформинга. На последней ступени процесса реформинга подобным образом можно дополнительно повысить на 3—7 пунктов октановое число продуктов за счет селективного крекинга к-парафинов, имеющих низкое октановое число. Для этого каталитического процесса высококремнистые цеолиты, например морденит, имеют преимущества перед цеолитом А вследствие их более высокой активности и термической устойчивости. [c.88]

    Что касается механизма действия цеолитных катализаторов, то следует отметить, что он еще недостаточно выяснен. Полагают [10, 11, 15], что реакции, катализируемые цеолитами, протекают по карбоний-ионному механизму. На каких центрах идут реакции, еще не установлено. Рабо с сотр. [10], которые наиболее подробно и обстоятельно исследовали реакции изомеризации к-пентана и и-гексана, предполагают, что активными центрами в цеолитах являются отрицательно заряженные тетраэдры А1О4". Согласно этой концепции, натриевая форма цеолитов является неактивной в изомеризации потому, что одновалентный катион полностью компенсирует заряд тетраэдра А104 , причем эта компенсация не зависит от величины отношения 8102/А120з в цеолите. [c.220]

    Индивидуальная окись хрома применялась в теоретических исследованиях с целью выяснения механизма реакций гидрирования, природы активных центров хемосорбции углеводородов и т. д. Так, авторы [246] считают, что в хромсодержащем катализаторе гидрирования этилена активным компонентом является ион Сг +, поскольку и цеолит, содержащий Сг +, и алюмо-хромовый катализатор с соотношением Сг + Сг + > 100 обладают активностью в изучаемой реакции. Наибольшая скорость процесса была на СггОд (8%)— AljOg. Специально было установлено, что катализаторы не содержали ионов ни Сг +, ни Сг +. [c.90]

    Рассмотрим теперь кратко историю изучения влияния температуры активации (Гакт) на каталитические свойства цеолита НН4У, поскольку именно эти исследования способствовали развитию представлений о природе активных центров. Венуто и сотр. [78] изучали образование этилбензола при алкилировании бензола этиленом при 177°С на цеолите ЫН4У со степенью обмена 90%. Катализаторы активировали в токе кислорода, поэтому присутствие некоторых количеств N2 в газовой фазе указывает на возможность окислительного разложения NH4-иoнa. На цеолите, активированном при температурах < 400°С, реакция даже не начиналась. Увеличение температуры прогревания привело к повышению активности, которая достигала максимума у образцов, активированных при 600° С, а цеолиты, прогретые при 700°С, оказались неактивными. Хотя в этой [c.24]

    Предположения о возрастании активности одного центра с увеличением общей концентрации активных центров в активированном цеолите NH4Y еще раньше выдвигались Туркевичем с сотр, [82], изучавшими крекинг кумола при 325° С, Число активных центров было определено путем последовательного отравления хинолином (см. ниже) серии катализаторов NH4Y с различной степенью обмена, предварительно прогретых при 500° С в вакууме. Зависимость относительной активности одного центра от числа этих центров представляла собой кривую с резким подъемом. Авторы связали активность с льюисовской, а не с бренстедовской кислотностью, хотя ни те, ни другие центры не способны вступать в координационное взаимодействие с хинолином. [c.29]

    Активаторы. Независимым подтверждением значения бренстедовских кислотных центров как носителей каталитической активности явились данные о промотирующем влиянии добавок соединений типа НА, т. е. соединений, способных к протонизации с образованием дополнительных ОН-групп в цеолите. Так, скорость изомеризации бутена-1 при 260°С на цеолите NaY, содержащем 0,3—5,7% обменных катионов и активированном при 500°С увеличилась соответственно в 600—38 раз в результате того, что перед началом опыта в цеолит добавили воду из расчета около 2 молекул на большую полость [170].Эстра1Юляция результатов по промотирующему действию воды на нулевое содержание катионов a показала, что у чистого NaY активность отсутствует. Авторы считают, что активные центры появляются в результате гидролиза воды. Другие примеры промотирующего действия HjO приведены в работе [169]. [c.63]

    Снижение каталитической активности цеолитов при постепенном добавлении таких оснований, как хинолин, изучалось во многих работах. Хотя этот метод и нельзя использовать для раздельного определения активности бренстедовских и льюисовских кислотных центров, потому что взаимодействовать с хинолином способны центры обоих типов, тем не менее с помощью отравления хинолином можно выяснить, активны ли все кислотные центры или только наиболее сильные из них. Туркевич [82, 86, 210] изучал влияние добавок хинолина на активность цеолитов в крекинге кумола при 325°С в импульсном микрореакторе. На катализатор попеременно подавались импульсы кумола и хинолина, причем доза последнего могла вызвать отравление всего лишь небольшой доли теоретически возможного общего числа кислотных центров. В серии цеолитов NH4Y с различной степенью обмена, активированных при 450°С, активность уменьшалась пропорционально общему количеству добавленного хинолина. При степени обмена меньше 50% число активных центров, рассчитанное по эквивалентному количеству молекул хинолина, было равно числу удаленных катионов Na" при более высоких степенях декатионирования рост числа центров замедлялся, возможно, из-за недоступности активнь1х центров, образующихся при глубоком декатионировании (О3 —Н ). Если Такт превышала 450°С, количество хинолина, вызывающее полное отравление цеолита, снижалось. Поэтому Туркевич связывает активность с наличием бренстедовских (а не льюисовских [82, 210]) центров, предполагая, что для отравления одного бренстедовского центра необходима одна молекула хинолина [86]. Льюисовские центры, по его мнению, с хинолином при 325°С не реагируют. Последнее утверждение не подкреплено экспериментальными данными и противоречит результатам ИК-спектроскопических наблюдений пиридина, адсорбированного на декатионированном цеолите Y. Согласно этим наблюдениям, пиридин более прочно связан с льюисовскими, чем с бренстедовскими центрами (ср, [47]). [c.64]


Смотреть страницы где упоминается термин Активные центры на цеолитах: [c.14]    [c.337]    [c.25]    [c.346]    [c.354]    [c.221]    [c.260]    [c.131]    [c.25]    [c.97]    [c.38]    [c.49]    [c.51]    [c.84]   
Химия цеолитов и катализ на цеолитах Том2 (1980) -- [ c.328 ]




ПОИСК





Смотрите так же термины и статьи:

Активность Активные центры

Активные центры на цеолитах внутренние

Активные центры на цеолитах карбониево-ионные

Активные центры на цеолитах никелевые

Активные центры на цеолитах отравление

Активные центры на цеолитах поверхностные

Активные центры на цеолитах реакций алкилирования

Активные центры на цеолитах электроноакцепторные

Активные центры на цеолитах электронодонорные

Активный центр

Жданов, Е. И. Котов. Механизм локального взаимодействия молекул-индикаторов с активными центрами декатионированных цеолитов

Структура и активные центры цеолитов



© 2022 chem21.info Реклама на сайте