Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция водорода металлами

Рис. 17.4. Потенциальная диаграмма рроцесса (17.116). Пунктирная кривая показывает влияние энергии адсорбции атомов водорода металлом на кинетику разряда—ионизации водорода Рис. 17.4. <a href="/info/78415">Потенциальная диаграмма</a> рроцесса (17.116). Пунктирная кривая показывает <a href="/info/7664">влияние энергии</a> адсорбции <a href="/info/1117693">атомов водорода</a> металлом на <a href="/info/15183">кинетику разряда</a>—ионизации водорода

    При этом атомарный (или ионный) водород, предварительно адсорбированный на катализаторе в непосредственной близости от реагирующей молекулы углеводорода, входит в состав переходного комплекса и далее, после перераспределения электронной плотности, регенерируется уже в молекулярном виде. Наличие поляризованного (и даже ионного) водорода на поверхности металлов в условиях реакции подтверждается работами различных авторов [129—131]. Так, после анализа экспериментальных данных, полученных при изучении адсорбции водорода на Pt, Ni и других металлах в условиях глубокого вакуума, сделан вывод [130] о существовании двух основных видов хемосорбции водорода слабой (обратимой) и прочной (необратимой). Слабо хемосорбированный водород находится, как правило, в молекулярной форме и несет при этом положительный заряд (М —Hj). При прочной хемосорбции водород диссоциирован и заряжен отрицательно (М+—Н-). При анализе состояния водорода в гидридах различных металлов [131] сделан вывод, что в гидридах большей части переходных металлов водород находится в двух формах Н+ и Н при этом форма (М+—Н ) является основной. [c.231]

    В дальнейшем эта теория была развита рядом ученых. Н. И. Кобозев связал замедление молизации водорода с энергией адсорбции водорода металлом. [c.624]

    Чем больше энергия адсорбции водорода металлом, тем больше он катализирует процесс разряда ионов Н3О+ (1.8) и тем больше степень заполнения поверхности металла атомами Наде. Учет влияния степени заполнения на скорость разряда объясняет более низкие токи обмена у титана, ниобия, тантала и циркония, хотя энергия связи их с водородом выше, чем у платины и железа (табл. 1.1). Адсорбция водорода на поверхности приводит к тому, что замедленной может стать не реакция разряда (1.8), а последующие стадии электрохимической десорбции (1.9) или рекомбинации атома Наде (1.10). Различия в энергиях связи М—Н и природе замедленной стадии определяют различия в перенапряжении водорода и механизмах катодных реакций на разных металлах. Высоким перенапряжением водорода отличаются ртуть, свинец, цинк и кадмий, на которых замедлена стадия разряда иона НзО- титан, цирконий, ниобий, тантал обладают средними значениями перенапряжения, и на них замедлена стадия электрохимической десорбции. На платине, железе и никеле лимитирующей стадией является химическая рекомбинация Наде. Эти металлы обладают высокими каталитическими характеристиками и низким перенапряжением водорода. [c.42]


    Чтобы реакция изомеризации на металлсодержащем катализаторе протекала постоянно, ее необходимо осуществлять в среде водорода. Это связано с явлениями адсорбции и диссоциации водорода на металле и переноса частиц водорода с металла на носитель. Имеют место также явления конкурентной адсорбции водорода и промежуточных ненасыщенных соединений на поверхности катализатора, при этом часть этих соединений вытесняется водородом с поверхности катализатора, что также обеспечивает его стабильную работу. [c.35]

    К металлам, характеризующимся большим значением перенапряжения (малой энергией адсорбции водорода), например Hg, РЬ, применима теория медленного разряда, при помощи которой можно объяснить большинство явлений, связанных с изменениями перенапряжения водорода. [c.628]

    К металлам, характеризующимся малым значением перенапряжения (большой энергией адсорбции водорода), например Р1, N1, нанболее применима теория рекомбинации. [c.628]

    Реальная поверхность твердых металлов обладает резко выраженной неоднородностью как в геометрическом, так и в энергетическом смысле. Вследствие такой неоднородности энергия адсорбции водорода на поверхности электрода будет существенно меняться при переходе от одного адсорбционного центра к другому. Так, на платине различия в энергии адсорбции на различных центрах могут превышать 10 ккал. [c.628]

    Адсорбция водорода, быстрая и прочная на активных металлах, подавляется олефинами. Это согласуется с наблюдаемым на многочисленных примерах кинетическим порядком, равным I по Нг и О по олефину. [c.81]

    Адсорбция кислорода или другого окислителя сопровождается поглощением электронов из металла и образованием незаполненных электронами d-уровней в металле, что переводит его в пассивное состояние. Адсорбция водорода или другого восстановителя сопровождается отдачей металлу электронов и заполнением электронами -уровней, что переводит его в активное состояние. [c.309]

    В области низких температур при контакте водорода с металлами происходит его адсорбция на поверхности последних. Изучение адсорбции водорода на конденсированных слоях никеля, хрома, железа и платины при температурах от О до —195 °С показало, что она складывается из необратимого и обратимого процессов, соотношение которых зависит от температуры с повышением температуры доля обратимо адсорбированных молекул N06. увеличивается, а необратимо адсорбированных Л н уменьшается [29]. [c.19]

    Было показано, что обратимая адсорбция водорода на металлах представляет собой молекулярную хемосорбцию, причем молекула хемосорбированного водорода является положительным концом диполя Ме — Нг (условно Ме — На ). Адсорбция водорода при —195 °С протекает крайне быстро и сопровождается распадом его молекул на атомы. Однако уже при этой температуре происходит рекомбинация хемосорбированных атомов водорода, и на части поверхностных атомов металла, свободной от атомарного водорода, происходит обратимая равновесная хемосорбция его молекул. Взаимодействие между электронами металла и адсорбированным водородом сопровождается поглощением теплоты [30 . [c.19]

    Адсорбция водорода на слоях металлов Си, Ag, 2п, Сс1 при температурах от —195 до 50—200 С и давлениях от 10 до 2- 10 2—4-10"2 мм рт. ст. происходит практически мгновенно и не сопровождается растворением газа в металле при образовании прочных поверхностных соединений. В этом случае она незначительна, примерно пропорциональна давлению, равновесна и обратима. Адсорбция водорода на указанных металлах является молекулярной хемосорбцией, не связанной с диссоциацией На на атомы [31]. [c.20]

    К а в т а р а д 3 е Н. Н. Адсорбция водорода на конденсированных слоях металлов. Канд. диссертация, 1956. [c.195]

    Метод кривых заряжения был распространен на другие металлы платиновой группы (палладий, родий, иридий, рутений и осмий), а также на сплавы платиновых металлов между собой и с другими металлами. Ход кривых заряжения зависит от природы электрода. Так, на иридии и родии и в особенности на рутении и осмии адсорбция кислорода начинается при более низких потенциалах, чем на платине, в результате чего происходит сильное перекрывание областей адсорбции водорода и кислорода. Кривые заряжения палладиевого электрода характеризуются наличием горизонтального участка, соответствующего переходу от твердого раствора водорода в палладии с большим содержанием водорода (Р-фаза) к твердому раствору с малым содержанием водорода (а-фаза). [c.71]

    Согласно другой гипотезе, водородное растрескивание происходит вследствие диффузии и адсорбции водорода на дефектах в вершине трещины, что снижает поверхностную энергию атомов напряженного металла [35] (адсорбционное растрескивание). [c.150]

    Если размер частиц одного из компонентов не превышает 2/3 размера частиц другого, то возможно образование твердых растворов внедрения путем проникновения меньших по размеру частиц в междоузлия кристаллической решетки, образованной более крупными частицами (рис. 70, б). Твердые растворы внедрения, например, образуются при совместной кристаллизации железа и углерода, при адсорбции некоторыми металлами водорода и т. д. [c.111]


    В отсутствие катализатора эта реакция вообще не протекает в измеримых количествах. Однако в присутствии тонко измельченного металла, например никеля, палладия или платины, реакция легко идет уже при комнатной температуре при давлении водорода в несколько сотен атмосфер. Механизм этой реакции схематически изображен на рис. 13.13. Сначала молекулы этилена и водорода адсорбируются на поверхности металла, как показано на рис. 13.13,а. Адсорбция водорода приводит к разрыву связи И—И и образованию двух связей М—Н, где М означает активный центр на поверхности металла эта стадия реакции показана на рис. 13.13,6. Атомы водорода могут относительно свободно мигрировать по поверхности металла. При столкновении с адсорбированной молекулой этилена атом водорода может связаться с углеродным атомом этой молекулы (рис. 13.13, в). В результате углеродный атом приобретает четыре а-связи, что уменьшает его способность оставаться адсорбированным на поверхности металла. Когда второй углеродный атом молекулы этилена в свою очередь [c.28]

    В качестве примера диссоциативной хемосорбции можно привести адсорбцию водорода на переходных металлах На2М2МН. При взаимодействии молекулы водорода с поверхностью металла электроны с ВЗМО молекулы водорода переходят на свободные -орбитали переходного металла. Распад молекулы водорода может протекать по гомолитическому или гетеролитическому механизму (см. 221). На оксидах —полупроводниках типа N10, СГ2О3 и др. — хемосорбция водорода сопровождается восстановлением оксидов с образованием гидроксидов металлов  [c.642]

    В качестве примера диссоциативной хемосорбции можно привести адсорбцию водорода на переходных металлах Н2 + 2М->2МН. При взаимодействии молекулы водорода с поверхностью металла электроны с ВЗМО молекулы водорода переходят на свободные d-орбитали переходного металла. Распад молекулы водорода может протекать по гемолитическому или гетеролитическому механизму [c.642]

    Как известно, при пропускании чистого параводорода над некоторыми металлическими поверхностями и при определенных минимальных температурах быстро устанавливается равновесие между пара- и ортомодификациями такое же, как и у обычного водорода, т. е. 1 3. Равновесие устанавливается при адсорбции водорода на активных центрах металла, обусловливающей возбуждение межатомных связей. При обратной рекомбинации водородных атомов и устанавливается обычное равновесное состояние пара и ортомодификаций. Воспрепятствовать указанному выше установлению равновесия можно, если в. водороде [c.86]

    Адсорбция органических соединений на металлах группы платины оказывается более сложной. На платиновых металлах адсорбируются водород и кислород, которые могут конкурировать с органическим веществом за адсорбционные места. Поэтому наряду с электрическим полем на адсорбцию органических веществ на платиновых металлах должна оказывать влияние также адсорбция водорода и кислорода. [c.143]

    Область потенциалов адсорбции водорода называется водородной областью, а область потенциалов адсорбции кислорода — кислородной областью. Эти области потенциалов можно установить, измеряя кривые заряжения платиновых металлов, т. е, зависимости между количеством электричества, сообщенным электроду, и потенциалом электрода. Типичная кривая заряжения приведена на рис, 68, Водородная и кислородная области разделены так называемой двойнослойной областью, в которой подводимое к электроду электричество тратится в основном на изменение заряда двойного электрического слоя. [c.167]

    Рекомбинационная теория была выдвинута Тафелем в 1905г. Согласно этой теории наиболее медленной является стадия мо-лизации (рекомбинации) адсорбированного водорода, поэтому в процессе электролиза концентрация атомного водорода на поверхности увеличивается по сравнению с равновесной, что и приводит к сдвигу потенциала электрода в отрицательную сторону. В дальнейшем эта теория была развита Н. И. Кобозевым, который связал замедление молизации водорода с энергией адсорбции водорода металлом. В рекомбинационной теории впервые было объяснено влияние материала электрода на величину перенапряжения водорода. [c.356]

    На поверхности металла происходит процесс физической адсорбции водорода. С увеличением температуры физическая адсорбция понижается, с увеличением давления возрастает, приближаясь к значению, соответствующему дюиодголекулярному слою газа. Тепловой эффект процесса физической адсорбции водорода металлами невелик и обычно не превышает 8,4—16,8 кДж/моль. Для меди при —183 °С теплота физической адсорбции водорода составляет 1,68—3,35 кДжЛюль и для железа в интервале от —195 °С до —183 °С равна 8,4 кДж/моль [84]. [c.247]

    С помощью аналогичных потенциальных кривых для адсорбированногс на разных твердых поверхностях атома Н можно легко убедиться в том, что по мере увеличения энергии адсорбции водорода на металле перенапряжение будет уменьшаться. При увеличении энергии адсорбции потенциальная кривая адсорбированного атома снижается, что, как это следует из рисунка, приводит к снижению энергии активации разряда. [c.627]

    Индий в процессе приготовления катализатора образует гидрид 1п2Нб, который разлагается при температуре 330 °С [65]. На дифференциальной термографической кривой при этой температуре ярко выражен эндотермический эффект, соответствующий процессу разложения гидрида. Платиновые металлы сами хорошо сорбируют водород и поэтому увеличивают его содержание в катализаторах. Молибден при выщелачивании образует окислы [65], способные удерживать дополнительные количества водорода. Свинец и сурьма резко снижают адсорбцию водорода, так как являются каталитическими ядами. [c.61]

    Дегидрирование изобутана в изобутилен. Эффективные катализаторы для превращения низших алканов в алкены — это окислы металлов VI группы, способные к активированной адсорбции водорода при повышенных температурах. На практике наибольшее распространение получили катализаторы на основе окиси хрома, нанесенной на окись алюминия. Наиболее активна аморфная форма окиси трехвалентного хромаСгаОз, содержащая некоторое количество соединений шестивалентного хрома. Роль окиси алюминия помимо основной функции носителя заключается в тормозящем действии на процесс кристаллизации окислов хрома, приводящий к потере активности катализатора. Кислотная функция окиси алюминия, наличие которой ускоряет реакции изомеризации и крекинга, подавляется добавлением небольших количеств щелочных металлов, в частности окиси калия. В некоторых случаях катализаторы дегидрирования алканов Q—Се промотируются редкоземельными элементами, например NdjOa, уменьшающих период разработки . Катализаторы на основе окиси алюминия неустойчивы к действию влаги, поэтому распространенный прием повышения степени превращения (и селективности) за счет снижения парциального давления углеводо- зодов при разбавлении сырья водяным паром в данном случае неприменим. [c.351]

    Оба описанных типа адсорбционных процессов оказывают отравляющее действие на обмен водорода и дейтерия иа железных катализаторах ири очень низких температурах (—196° С). Мабл.одаемые в этом случае зависимости имеют тот же характер, что и ири адсорбции водорода на угле. При столь низких температурах, по-видимому, происходит хемосорбция того типа, которьгй сопровождается значительно более низкими теилотами адсорбции и десорбции, чем хемосорбционные процессы, преобладающие при более высоких температурах [123]. Хотя окончательно это решить нельзя, можно предположить, что низкотемпературная хемосорбция относится к диссоциативному типу, поскольку в этих условиях происходит обмен водорода с дейтерием. Так или иначе связь между двумя атомами водорода должна быть сильно ослаблена. Можно считать, что при температуре жидкого воздуха в хемосорбционных процессах участвуют иные электроны металла, че.м при более высоких те.мпературах, когда связи, по-видимому, образуются за счет /-электронов. [c.78]

    При комнатной и более высоких температурах молекулы, связанные с поверхностью вандерваальсовыми силами, постепенно становятся хемосорбированными [51]. Эта особенность кислорода отчетливо обнаруживается в его способности катализировать (благодаря парамагнитным свойствам) реакцию орто-пара превращения водорода. Будучи адсорбированным на угле при низких температурах, кислород ускоряет эту реакцию, но если адсорбция происходит при более высоких температурах, то он оказывает отравляющее действие [132, 133], Следовательно, для протекания реакции кислорода с поверхностью угля требуется энергия активации. В случае адсорбции на металлах энергия активации может быть ничтожно малой или даже равна нулю. Па поверхности цезия при температуре жидкого воздуха кислород самопроизвольно образует хемосорбционный слой молекул поверхностного окисла. Вполне возможно, что этот хемосорбционный процесс не имеет диссоциативного характера (см. далее настоящий раздел). На пленке молибдена, полученной испарением металла в высоком вакууме, переход от физической адсорбции к хемосорбции требует более высоких температур. Этот переход может быть обнаружен по уменьшению электропроводности пленки в результате хемосорбции кислорода [78]. Аналогичная картина наблюдается при адсорбции кислорода на никеле и платине [53]. [c.83]

    Другие исследователи получили аналогичные и более сложные слои при адсорбции водорода на поверхности металлов в результате комбинированного действия хемосорбции и по-вер <иостио1г миграции. [c.104]

    Как видно из приведенных данных, с повышением температуры содержание водорода падает. По мере увеличения продолжительности электролиза (толш,ины осадка) уменьшается содержааи водорода в осадке. Это объясняется адсорбцией водорода поверхностными слоями осадка металла (табл. 16), поэтому с увеличением толщины общее содержание водорода падает. [c.46]

    На галлиевом электроде в отличие от ртути при адсорбции анионов в кислых растворах наблюдается возрастание перенапряжения водорода. Аналогичное действие анионов наблюдается и на многих других металлах, например на железе. Оно связано с уменьшением энергии адсорбции водорода при прочной адсорбции анионов. Снижение н. как видно из уравнения (50.2), приводит к росту перенапряжения. Этот эффект для Ga и Fe превалирует над электростатическим эффектом, вызванным сдвигом гргпотенциала в отрицательную сторону. Наоборот, в кислых растворах на Hg превалирует электростатический фкэффект и адсорбция анионов I" снижает перенапряжение водорода. [c.258]


Смотреть страницы где упоминается термин Адсорбция водорода металлами: [c.99]    [c.36]    [c.412]    [c.440]    [c.66]    [c.245]    [c.99]    [c.64]    [c.75]    [c.79]    [c.65]    [c.65]    [c.167]   
Каталитические процессы переработки угля (1984) -- [ c.43 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция водорода

Металлы водородом



© 2022 chem21.info Реклама на сайте