Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закономерность изменения параметров процесса

    Взаимодействие бумаги с краской имеет сложный механизм. Существенное влияние на качество оттиска оказывает взаимодействие компонентов краски, в частности растворителя и высокомолекулярного вещества, растворителя и пигмента-сажи. Несомненно, на этот процесс оказывает влияние взаимодействие между двумя видами дисперсной фазы в краске, сформированными структурными образованиями высокомолекулярных соединений и углеродным пигментом. Подобные вопросы в литерату эе практически не рассматривались и были поставлены в связи с современным этапом развития коллоидно-химической технологии нефтяного сырья. Рассматривая с этих позиций превращения в композициях краски, можно предположить возможность сорбции высокомолекулярных веществ на саже, выделение фазы из межчастичного пространства сажевых агрегатов и, наконец, образование двух несме-шивающихся видов дисперсной фазы в растворе. Указанные превращения играют решающую роль в поведении краски и должны учитываться при выборе оптима чь-ных компонентов красок и решении рецептурной задачи. Были изучены закономерности в реологических свойствах наполненных и ненаполненных сажей растворов высокомолекулярных соединений нефти в минеральных маслах, количественные характеристики удерживающей способности высокомолекулярных соединений нефти по отношению к минеральным маслам, закономерности изменения устойчивости получаемых растворов, определены параметры взаимодействия в этих растворах между высокомолекулярным веществом и пигментом. Практическим выходом работы явилось создание новой рецептуры черной печатной газетной краски на базе побочных продуктов процессов переработки нефти. [c.252]


    Поэтому оценка критических параметров насадок пламегасящих элементов производится с учетом указанных выше закономерностей изменения параметров процесса разложения ацетилена высокого давления, установленных в условиях максимально приближенных к реальным. [c.88]

    Задача анализа любого термодинамического процесса — установление закономерностей изменения параметров состояния рабочего тела и выявление особенностей превращения энергии. [c.56]

    В настоящее время еще отсутствует нужное количество данных, чтобы выявить закономерности изменения параметров Ьа и Ь] в зависимости от характера изучаемых сорбатов и условий эксперимента. Можно отметить лишь некоторые явления, замеченные при подготовке табл. 4.28. Неподчинение величин Ь и р уравнению (4.55) наблюдалось нами чаще всего тогда, когда подвижная фаза состояла из двух близких по элюирующей силе растворителей. Такая ситуация рассмотрена в работе [185], где в качестве менее полярного растворителя использовали метиленхлорид. Вероятно, в этом случае приповерхностный слон содержит в сопоставимых количествах оба компонента подвижной фазы, потому процессы вытеснения не могут быть описаны обсуждаемой моделью. [c.144]

    Изменение параметров процесса (температуры, давления и т. п.) с переходом к другим постоянным их значениям должно приводить к установлению новых стационарных или квазистационарных режимов вместо ранее реализованных, для чего требуется некоторое время, величина которого ограничивается условиями Франк-Каменецкого. Общий характер закономерностей при этом также не должен изменяться, если кинетика и механизм процесса остаются неизменными. [c.126]

    Определенную специфику здесь вносит необходимость выявления закономерных изменений параметров по ходу фильтрационного процесса, связанных, в частности, с его нелинейностью например, изменения коэффициента гравитационной емкости, обусловленные слоистостью пласта вблизи понижающейся свободной поверхности). [c.282]

    Излагая теоретическую схему течения, которая в главном отражает действительный процесс и хорошо согласуется с экспериментом, необходимо остановиться на закономерностях изменения параметров потока по радиусу за лопаточными венцами вентилятора и перед ними на расчетном режиме. Это важно как для понимания этого процесса, так и для решения практических вопросов, связанных с аэродинамическим расчетом, проектированием, разработкой конструкции вентилятора, его изготовлением и эксплуатацией. [c.69]

    При изменении параметров левая часть уравнения (VII.47) изменяется так же, как раньше (см. рис. VII.5, б и VII.5, в). Следовательно, все характерные черты реакции с произвольной кинетикой сохраняются в случае реакции первого порядка, и мы можем использовать этот простой случай для изучения общих качественных закономерностей рассматриваемого процесса. [c.164]


    Учитывая большую важность стадии термодеструктивного превращения остатков в атмосфере водорода, рассмотрим более подробно результаты исследования, проведенные нами для выявления закономерностей изменения свойств остатков при нагреве их в среде водорода в отсутствие катализатора при технологических параметрах, аналогичных процессу их каталитического гидрооблагораживания. [c.60]

    Основные закономерности изменения селективности, показанные на рис. 2.8, определяются изменением отношения коэффициентов ускорения при варьировании режимных параметров процесса. Модификация поверхности пор [21] также приводит к направленному изменению коэффициентов ускорения Ф , повышая их для целевого компонента и снижая для балласта (см. рис. 2.9). [c.70]

    В процессе продолжительной эксплуатации геометрические параметры передних мостов подвержены закономерным изменениям. Однако в большинстве случаев эти изменения своевременно и должным образом не контролируются и не устраняются. [c.168]

    Химическая термодинамика определяется как наука, изучающая свойства равновесных химических систем и закономерности изменения равновесия в химических системах с изменением внешних параметров — Т, Р, С, химической переменной и других. В химической термодинамике равновесия в химических системах и процессы химического превращения веществ изучают с использованием трех законов термодинамики. [c.6]

    Чтобы определить лимитирующую стадию, сравнивают закономерности исследуемого электродного процесса с закономерностями, характерными для различных стадий. При этом для измерения поляризации используют трехэлектродную электрохимическую ячейку (см. рис. 49), позволяющую определить изменение отдельного гальвани-потенциала, а скорость электродного процесса измеряют при помощи приборов, фиксирующих электрический ток. После определения лимитирующей стадии, соответствующим образом изменяя условия электродного процесса, можно изменить его скорость в нужном направлении. Данная стадия оказывается лимитирующей лишь в определенных условиях, и изменение этих условий (например, изменение поляризации) может привести к смене лимитирующей стадии. После этого варьирование параметра, от которого сильно зависела скорость электродного процесса, может перестать оказывать на нее заметное влияние. [c.171]

    Закономерное изменение прочности и твердости углей и полученных при их нагревании твердых продуктов имеет большое теоретическое значение, так как эти параметры характеризуют важные свойства, связанные с особенностями их природы, петрографического состава и степени метаморфизма. Кроме того, механические свойства отражают, в некоторой степени, и различие молекулярного строения отдельных видов твердого топлива. Исследование прочности и твердости углей дает также возможность определить их техническую пригодность для тех или иных технологических процессов. [c.195]

    Многие задачи, возникающие при исследовании кинетики и механизма химических реакций, могут успешно решаться с помощью АВМ. АВМ наиболее пригодны для построения кинетических кривых по исходным данным. Знание закономерностей изменения во времени различных параметров процесса и прежде всего концентраций исходных, промежуточных и конечных веществ необходимо для расшифровки механизма процесса, а также имеет большое самостоятельное значение. Оно позволяет, например, вести технологический процесс так, чтобы получить максимальный выход целевого продукта с наименьшими затратами. [c.345]

    Для упрощения количественного анализа ламинарного смешения разработан метод исследования изменения площади поверхности раздела фаз в процессе смешения. Увеличение площади поверхности раздела можно непосредственно связать с начальной ориентацией и общей деформацией системы [17, 3]. Величину деформации можно рассчитать, зная в деталях картину течения. В конечном счете общая деформация может служить количественной характеристикой ламинарного смешения. Ее можно связать с конструкцией смесителя, технологическими параметрами процесса смешения, физическими свойствами смеси и начальными условиями. Однако измерить общую деформацию жидкости нелегко. Не удается также установить непосредственную связь между расчетной величиной деформации и композиционной однородностью смеси, которая зависит от распределения элементов поверхности раздела внутри системы. Лишь в относительно простых случаях удается рассчитать ширину полос текстуры по величине общей деформации. В более общем случае для определения величины деформации, обеспечивающей заданную однородность смеси, приходится устанавливать эмпирические закономерности. Таким образом, деформация является характеристикой процесса, позволяющей установить связь между параметрами процесса смешения и качеством смеси. В дальнейшем некоторые из этих количественных подходов будут рассмотрены более детально. [c.199]

    Тепловое расширение полимеров может быть также оценено по изменению их удельного объема = р , где р — плотность. Эта характеристика используется при переработке пластмасс из расплава, когда важно определить некоторые технологические параметры процесса производства изделий (объем впрыска при литье под давлением, сечение экструдата на выходе из формующей головки экструзионного агрегата, динамика усадки изделия при формовании из расплава). Интересно, что в этом случае аморфно-кри-сталлический состав полимера вызывает непропорциональность зависимости = ф(Т) на участке до температуры плавления (рис. 51, кривые ПЭНП и ПЭВП). После перехода в полностью аморфное состояние зависимость становится линейной. Аморфный ПВХ (рис. 51) ведет себя в полном соответствии с отмеченными ранее закономерностями. [c.135]


    Таким образом, исключив промежуточные стадии взаимодействия в катализе, в термодинамике утрачена возможность установления зависимости между избирательностью действия катализаторов и термодинамическими параметрами процесса. Если учесть изменение термодинамических характеристик реагирующих веществ и катализатора при переходе от начальных состояний молекул к их хемосорбированным формам, то нужно ожидать установления простых закономерностей, связывающих термодинамическую возможность такого перехода с избирательным действием катализаторов. [c.30]

    В главе II изложены основы математического описания и моделирования применительно к задачам масштабирования и автоматизации химических процессов и обосновывается возможность получения кинетических данных в ограниченной (локальной) области изменения параметров. В общем случае в качестве уравнений локальной кинетики рекомендуется использовать известные уравнения химической кинетики, введя в них зависимость от факторов, функционально связанных с текущей концентрацией реагирующих веществ. Если при этом под терминами константа скорости и порядок реакции понимать некоторые их формальные значения,.то эти уравнения можно распространить (см. ниже) в локальной области на гомогенные и гетерогенные реакции, протекающие в кинетической и диффузионной областях. Вместе с тем, па основании анализа ряда промышленных химических процессов и основных закономерностей химической кинетики, обращается внимание на то, что известное многообразие кинетических зависимостей и уравнений, отражающих скорость различных по характеру процессов, с достаточной для практических целей точностью можно в большинстве случаев представить уравнением, выражающим образование конечных продуктов реакций, протекающих как бы параллельно. [c.9]

    Иногда мы располагаем данными о кинетике того или иного процесса, выявленной по обычно применяющимся методикам. Однако эти данные будучи пригодны при выборе оптимального технологического режима, в большинстве случаев (в особенности для каталитических процессов) недостаточно точны для перехода методами масштабирования от модельных аппаратов к промышленным, а также для оптимизации аппаратурного оформления и автоматизации, и требуют коррекции. Объясняется это тем, что уравнения кинетики, выведенные в лабораторных условиях применительно к широкому диапазону изменения параметров без учета факторов, появляющихся при промышленном оформлении процесса, отражая общие закономерности, не могут обладать необходимой точностью математического описания процесса для рассматриваемых целей. [c.19]

    Наряду с изложенным следует указать, что задачу выявления закономерностей протекания химического процесса для масштабирования, оптимизации аппаратурного оформления и автоматизации можно значительно упростить и приложение для этих целей математических методов сделать более доступным, если кинетику изучать применительно к ограниченной (локальной) области изменения технологических параметров. [c.21]

    Обычно кривые сушки и скорости сушки получают опытным путем, при постоянных параметрах ( , х) сушильного агента. Однако непосредственное применение этих кривых для расчета промыщленного оборудования ограничено тем обстоятельством, что температура и влагосодержание газовой фазы изменяются по длине аппарата. Причем закон этого изменения определяется в общем случае взаимным направлением фаз, гидродинамическими, тепло- и массообменными параметрами процесса. Расчетные методы определения продолжительности сушки основаны на закономерностях тепло- и массопереноса в системе твердое тело-газ. [c.237]

    Изменение химсостава сырья коксования путем глубоковакуумной перегонки и термического крекинга должно сказаться не только на выходе кокса и его качестве, но и на технологических параметрах процесса. Для определения влияния качества подготовленного сырья на тепловой режим реакционной камеры и интенсивность коксоотложения в змеевике печи указанные остатки были проверены в процессе замедленного коксования на пилотной установке. Процесс осуществлялся при температуре на выходе из печи 495°С, избыточном давлении 4,5 кгс/см , производительности по сырью 30 л/ч. Как видно из представленных данных (табл. 3), наблюдается закономерность в подъеме температуры коксования по мере утяжеления прямогонных остатков, а также при использовании крекированных видов сырья. Это объясняется увеличением содержания в этих остатках асфальто-смолистых веществ и уменьшением количества парафиновых углеводородов, что снижает роль эндотермических реакций распада при коксовании и приводит к уменьшению затрат тепла на процесс. Следовательно, температура в реакционной камере повышается. При коксовании крекинг-остатка доля реакций распада значительно ниже (так как продукт уже подвергался термическому воздействию), а роль реакций уплотнения, сопровождающихся выделением тепла, возрастает из-за наличия в крекинг-продукте непредельных углеводородов. При повышении температуры в реакционной камере следует ожидать улучшения качества кокса по таким показателям, как содержание летучих веществ и механическая прочность. [c.40]

    Математическое моделирование акустической эмиссии на основе теории марковских процессов [46] позволяет описать наблюдающиеся закономерности изменения интенсивности АЭ со временем, в частности их немонотонный характер. Пуассоновский поток АЭ-событий рассматривался как частный случай марковского процесса, порожденного рождением и гибелью структурных эле -ментов материала в объеме или на поверхности твердого тела (дислокации, двойника, пятна контакта поверхностей при их взаимном трении и других). При определенных значениях параметров рассмотренной модели расчетные зависимости изменения скорости счета со временем соответствуют наблюдаемым при пластическом деформировании материалов, в процессе приработки поверхностей трения, при некоторых видах коррозии. В частности объяснено появление максимума на зависимости N(t), наблюдавшегося во многих случаях после начала процесса или скачкообразного изменения его интенсивности. [c.184]

    При анализе взаимодействия рассмотренных выше составляющих повреждения в рамках рассматриваемого механизма повреждения материалов используется гипотеза их линейного суммирования [82, 85, 117, 210, 234]. При этом предполагается, что эти составляющие повреждения должны быть выражены в виде соответствующих функционалов, связывающих закономерности кинетики обусловливающих их деформационных параметров процесса циклического деформирования материала с учетом ее нелинейности, а также в виде зависимостей изменения свойств материала по параметрам времени т и температуры t в связи с условиями деформирования. Таким образом, оставаясь по форме линейным, фактическое суммирование составляющих усталостного df и квазистатического d, повреждения в соответствии с уравнениями (5.6) отражает сложные нелинейные процессы их кинетики по числу циклов и условиям нагружения и может быть представлено как [c.155]

    Таким образом, теперь вопросы оптимального проектирования реакторов не могут быть разрешены без применения рециркуляционного контура и соответствующей математической модели процесса, описывающей промышленную реализацию реакции. Здесь мы сталкиваемся с необходимостью перенесения данных из колбы в промышленный реактор. Поэтому мы ставим вопрос о создании реакторов, работающих с оптимальным профилем регулируемых параметров процесса. Естественно, при этом будут спроектированы реакторы, теория которых будет известна до их практического создания, а не наоборот, как это имеет место теперь, когда реактор действует, а теории его работы фактически не существует. Хорошо разработанная теория реактора необходима для воспроизводства в промышленных условиях полученных в лаборатории данных. Основная трудность перенесения данных лаборатории в промышленность обусловлена тем, что в настоящее время, как было уже отмечено, для осуществления большого числа различных типов реакций используется ограниченное количество типов реакторов с недостаточно известной закономерностью изменения параметров процесса в реакторе. Так почему же не создавать реакторы такими, какими они доллшы быть, а пользоваться теми, которые есть  [c.16]

    Одним из основных аспектов повышения производственного потенциала нефтеперерабатывающих и нефтехимических предприятий является интенсификация технологических систем, среди которых ведущее место занимают массо- и теплообменные процессы в совокупности с соответствующей аппаратурой. Как правило, решение задач математического моделирования технологических процессов и разработка новых конструкций аппаратов базируются на классических представлениях о закономерностях протекания кинетики, массо- и теплопереноса. Общий недостаток этих классических представлений заключается в том, что решение задачи интенсификации процесса носит асимптотический )црак1ер, то есть значительные количественные изменения параметров процесса не приносят сколько-нибудь заметного улучшения результата. [c.214]

    Для исследования процесса в различных режимах функционирования было составлено математическое описание процесса получения реактива Гриньяра в реакторе полунепрерывного действия. Задачей математического моделирования являлось определение закономерностей изменения параметров, характеризующих предаварийные реншмы процесса при различных значениях величин, являющихся источниками аварийных ситуаций. Был применен комплексный метод, предусматривающий изучение [c.205]

    Нестапионарность катализатора. Под воздействием изменяющегося состава реакционной среды катализатор не остается неизменным. Помимо химических стадий взаимодействия реагирующих веществ имеют место физические процессы на поверхности (перенос реагирующих веществ между различными центрами, поверхностная диффузия адсорбированных атомов и молекул, растворение и диффузня в твердом теле веществ — участников реакции, структурные и фазовые превращения) [30, 31, 32]. Не-стационарность состава катализатора весьма своеобразно ирояв-ляется в кипящем слое, где частицы непрерывно перемещаются в поле переменных концеитрации. При этом каждая частица в отдельности непрерывно изменяет свои каталитические свойства, никогда не приходя в равновесне с окружающей реакционной средой. Хотя усредненные за достаточно большой период времени свойства катализатора остаются неизменными и реактор в целом работает стационарно, его выходные характеристики могут существенно отличаться от рассчитанных с исиользованием стационарных кинетических уравнений. Для построения нестационарной кинетики каталитического процесса необходимо выявить параметры состояния катализатора, определяющие скорость реакции, закономерности их изменения под воздействием реакционной смеси, разработать методы измерения пли расчета этих параметров в ходе нестационарного эксперимента. Не меньшие трудности возникают при разработке и решении математической модели, отражающей изменение параметров состояния по глубине пленки активной массы в зерне, случайно перемещающемся по высоте слоя. [c.62]

    Результаты опытов, проведенных в широком диапазоне изменения параметров режима разделения (1= 100-140°С, Р=4,0-6,5МПа), позволили выявить основные закономерности влияния температуры, давления, высоты уровня фаз на чистоту выводимого с верха аппарата растворителя[2,3]. В частности, было установлено [3], что имеет место резкое увеличение выноса деасфальтизата с растворителем при превышении давления в аппарате выше некоторого порогового значения. Последнее в заметной степени зависит от температуры, наличия внутренних ус фойств, их конструкции и положения уровня раздела фаз. Увеличение температуры процесса фазоразделения приводит к увеличению порогового давления. Путем применения внутренних устройств можно существенно расширить область варьирования параметров режима, в котором осуществляется удовлетворительное отделение растворителя от деасфальтизата. [c.53]

    На основе диф зионной теории роста кристаллов рассяютрена кинетика кристаллизации парафиновых углеводородов при охлаждении парафинового дистиллята. Рост кристаллов парафина по длине кристаллизатора описывался системой дифференциальных уравнений, которая имела аналитическое решение. Значения отдельных параметров процесса определены исходя из свойств парафинового дистиллята и парафина применительно к проиышленноцу кристаллизатору. Расчеты по заданной программе выполнялись на ЭВИ "иинск-22". Установлены закономерности изменения по длине кристаллизатора толщины диффузионного слоя, поверхности кристаллов парафинов, коэффициента массообмена, пересыщения. Показано, что скорость роста существен- [c.151]

    В этом случае в процессах пиролиза углеводородного сырья эволюция параметров функции нормального распределения состава продуктов при изменении жесткости пиролиза должна иметь квазилинейный характер. На примере пиролиза показана адекватность модели (табл.3 3 и 3.4), что при пиролизе органических веществ имеет место общая закономерность, связывающая среднее значение свободной энергии компонентов и фактор жесткости процесса пиролиза, принятого в качестве меры интенсивности внешнего воздействия на систему. 1 аким образом, учитывая особенности процессов пиролиза в газовой фазе, получено решение уравнения КФП. Результаты свидетельствуют о квазилинейном температурно-временном изменении параметров функции нормального распределения фракционного состава продуктов пиролиза (рис 3.4 и 3 5). Аналогичную картину наблюдаем для фактора жесткости Ван - Кампа (рис 3.6). Несмотря на то, что сама функция распределения нелинейна при изменении темперагуры, ее параметры изменяются линейно. Как сг(е-дует из рис.3.4 и рис.3.5 при малых временах контакта до 0.5 с. для легких углеводородных фракций модель удовлетворительно описывает изменение параметров функции распределения п]ри всех температурах. В отличие от приведенных ниже данных средняя [c.52]

    На конечные свойства горячештампованных днищ, применяемых при изготовлении нефтегазохимических аппаратов, оказывает влияние множество факторов, из которых к числу наиболее существенных относятся параметры термического цикла штамповки. Установление закономерностей изменения температурных полей системы заготовка-штамповая оснастка является важным условием при проектировании оптимального технологического процесса изготовления днищ или совершенствовании существующего. Имеются экспериментальные и расчетные методы исследования температурных полей в термических процессах. Экспериментальные методы применяются, чаще всего, для проверки результатов расчета температурных полей. Расчетные методы подразделяются на аналитические и численные. Первые, применимы, в основном, для простых тепловых расчетов, в которых учитывается небольшое количество факторов [1]. Для сложных тепловых процессов решения можно получить только с помощью численных методов с применением ЭВМ. К числу таких методов относится метод конечных разностей [2], который получил широкое распространение в связи с появлением мощных компьютеров. Он характеризуется относительной простотой получения базовых уравнений и реализации алгоритма решения на ЭВМ. [c.280]

    Вряд ли существует какая-либо закономерность в изменении Г) от температуры охлаждения, которая наблюдается на графике рис. 3.20. По-видимому, при расчете технологических схем отдельных установок, параметры процесса п состав хладоагента были подобраны с большей плп меньшей эффективностью. Значения г), ириведенные на графике, могут быть исиользова-ны для быстрой оценки затрат энергии на охлаждение или сжижение природного газа. Для этого требуется только вычислить энтальпию п энтропию газа при начальных и конечных параметрах охлаждаемого газа. Затем ио уравнению (3.141) вычислить мипимальпую работу и, приняв г) равным 0,35 0,4, вычислить действительную работу. [c.165]

    Закономерное изменение структурных характеристик витриннтов углей, получаемых на ИК-спектров. позволило выделить параметры. характеризующие иаменение их структуры в процессе метаморфизма. Соотношеяве оптических плотностей при 2920 и 3040 см - [c.115]

    Если известны кинетические закономерности процессов, с помощью этих уравнений можно описать изменение параметров во времени и пространстве, различный состав фазы (например, типы бактерий) и конкретные граничные условия. Однако решать эти дифференциальные уравнения для конкретных практических условий непросто. Сегодня в этих целях используются компьютерные программы, специально разработанные для решения таких уравнений применительно к биопленкам [23]. Применение подобных программ для анализа, определения функциональных характеристик и проектирования, несомненно, будет расширяться. [c.243]

    Указанные выше монотонные, циклические и случайные процессы планетарного и космического масштаба приводят к кардинальным изменениям условий жизни на Земле, создавая соответствующие риски. Несмотря на неизмеримо возросшие возможности человека противостоять природным и техногенным угрозам, закономерности и параметры этих процессов очень сложны для исследования и количественного описания. В связи с этим такого рода глобальные катастрофы, затрагивающие все живое на Земле, должны быть отнесены к гипотетическим, а степень реально прогнозируемой защищенности от них чрезвычайно мала. Последствия такого рода общепланетарных катастроф могут оцениваться как предельные, когда вероятность уничтожения жизни на Земле приближается к 100 %. В этом случае риск летального исхода, обычно измеряемый числом смертей на 1000 чел., также составит Ю . При общем числе жителей на Земле в настоящее время порядка 5 10 и вероятности возникновения общепланетарных природных катастроф в 10 -10 9 в год риск [c.24]


Смотреть страницы где упоминается термин Закономерность изменения параметров процесса: [c.26]    [c.206]    [c.96]    [c.90]    [c.169]    [c.15]    [c.278]    [c.21]    [c.273]   
Теория рециркуляции и повышение оптимальности химических процессов (1970) -- [ c.16 ]




ПОИСК





Смотрите так же термины и статьи:

Закономерность процессов



© 2022 chem21.info Реклама на сайте