Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция латекса

    К учитываемым технологическим параметрам процесса коагуляции относятся тип, концентрация и количество используемого при коагуляции электролита, обеспечивающего не только полную коагуляцию латекса за время контакта его с электролитом, но и образование стабильной дисперсии каучука в водной фазе с частицами (крошкой) требуемых размеров температура степень разбавления образующейся крошки и интенсивность смешения потоков длительность контакта электролита с латексом и длительность отдельных стадий химических реакций, необходимых в процессе коагуляции. [c.256]


    Ряд исследователей считают, что коагуляция связана с преодолением энергетического барьера в результате сжатия диффузной части двойного слоя ионов [32] другие полагают, что коагуляция латексов электролитами происходит в основном за счет понижения растворимости ПАВ, стабилизующего латексные частицы (высаливание ПАВ) [33]. Степень ионизации молекул ПАВ в адсорбированном слое в значительной степени зависит от содержания электролита в водной фазе, от концентрации и природы адсорби->ованного ПАВ, от степени гидролиза мыла или от pH [34, 35]. Ломимо этого, степень заполнения поверхности латексных частиц адсорбированными ПАВ оказывает огромное влияние на агрегативную устойчивость этих коллоидных систем, особенно при заполнении поверхности более чем на 40—50% [36—38], что, по-видимому, связано с изменением энтропии коагуляции коллоидной системы. [c.256]

    Пороги коагуляции латексов БНК зависят от содержания акрилонитрила и эмульгатора в системе полимеризации. Необходимая устойчивость латексов к механическим воздействиям достигается при содержании эмульгатора 3 ч. (масс.) на 100 ч. (масс.) мономеров. При этом расход для коагуляции хлорида натрия весьма высок. Применение солей двухвалентных металлов (Са", Mg ) способствует образованию нерастворимых в воде, но растворимых в полимере солей эмульгатора, замедляющих вулканизацию резиновых смесей из БНК- [c.360]

    В результате изучения влияния состава и концентрации электролитов, температуры и продолжительности отдельных стадий на процесс формирования зерен и пористой ленты был разработан непрерывный способ зернистой коагуляции латекса растворами электролитов с образованием мелких зерен, легко отмывающихся от эмульгатора и электролитов. При отмывке происходит образование пористой ленты на непрерывно движущейся сетке. Сушка ленты осуществляется в токе горячего воздуха в горизонтальных сушильных агрегатах. Этот метод был внедрен в производство на Ереванском химическом комбинате и оказался достаточно надежным в условиях длительной эксплуатации, причем наряду с простотой технологического оформления он отличается [c.382]

    С одной стороны, в результате ряда экспериментальных исследований установлено наличие у поверхности латексных частиц, модифицированной адсорбционными слоями эмульгаторов,, гидратных прослоек, эффективная толщина которых имеет порядок 10 м и зависит от ряда факторов степени насыщения адсорбционных слоев, температуры, содержания электролитов в латексе и др. Однако эти данные сами по себе недостаточны для того, чтобы делать какие-либо выводы о влиянии особых свойств и структуры граничных прослоек водной среды на агрегативную устойчивость синтетических латексов. Как будет здесь показано, к представлению о существовании неэлектростатического фактора стабилизации — структурного отталкивания, обусловленного граничными гидратными прослойками, — приводят результаты исследований кинетики коагуляции латексов [c.189]


    Кинетика коагуляции латексов [c.193]

    Коагуляция электролитами. Рис. 11.3 иллюстрирует кинетику коагуляции, адсорбционно ненасыщенного латекса по данным нефелометрии. Обращает на себя внимание существование начального и промежуточного индукционных периодов, подтверждаемое и электронно-микроскопическими наблюдениями за развитием коагуляционного процесса [534—536]. Подобные результаты были получены при коагуляции латексов электролитами типа 1-1, 2-1, 3-1. [c.194]

    Согласно излагаемой точке зрения, электролит выполняет двоякую роль при коагуляции латекса снижает или снимает барьер электростатического отталкивания и вместе с тем вызывает утончение граничных гидратных прослоек у поверхности латексных частиц и ослабление структурного отталкивания. С этой второй функцией электролита связаны переходы от индукционных периодов к агрегации частиц и коагуляции латекса. [c.196]

    Коагуляция при замораживании. Для исследования агрегации и коагуляции латексов при замораживании был разработан метод снятия кинетических диаграмм замораживания в тонком слое [532, 533]. На рис. 11.5 представлена кинетическая диаграмма замораживания латекса, показывающая зависимость времени наступления агрегации и коагуляции от температуры замораживания. О начале агрегации, а затем и коагуляции судили по изменению мутности, поверхностного натяжения латекса и порога быстрой коагуляции его электролитом после оттаивания в стандартных условиях. [c.196]

    Эти закономерности можно объяснить, учитывая структурный фактор агрегативной устойчивости следующим образом. Перемешивание приводит к постепенному разрушению и утончению гидратных прослоек у поверхности частиц, возрастающему с увеличением времени воздействия, и сопровождается ослаблением структурного отталкивания. Вследствие этого устойчивость латекса снижается, что и находит выражение в уменьшении ПБК. Прогрессирующая дегидратация достигает некоторого критического рубежа, за которым следует коагуляция, так как механическое воздействие становится достаточным для преодоления электростатического барьера. Таким образом, индукционный период, предшествующий коагуляции латекса жесткого полимера при иеремешивании, также может быть [c.198]

    Таким образом, рассмотренные закономерности коагуляции латексов электролитами, замораживанием и перемешиванием приводят к выводу, что во всех случаях существенную роль в протекании коагуляционных процессов играет фактор агрегативной устойчивости, связанный со структурой и свойствами граничных гидратных прослоек у поверхности латексных частиц. [c.199]

    Узел выделения каучука. Назначение узла коагуляция латекса, формирование и промывка ленты, сушка и упаковка каучука. [c.248]

    Латекс после отгонки дивинила [и стирола с содержанием 14—18% каучука, 0,1—0,3% стирола и 2,3—3,2% неозона Д подается на щит коагуляции. Перед поступлением на щит коагуляции латекс заправляется маслом ПН-6. [c.248]

    Процесс коагуляции латекса в крошке более гибок в варьировании условий коагуляции, чем на лентоотливочных машинах [86]. [c.249]

    Коагуляция латекса и формование крошки каучука. [c.433]

    Коагуляция латексов и выделение из него каучука СКС происходит под воздействием смеси 25% -ного раствора хлорида натрия и 2%-ной серной кислоты. Этот коагулянт разрушает эмульгатор на поверхности капель каучука и нарушает стабильность коллоидной системы (эмульсии). [c.433]

    Работа 27. ИССЛЕДОВАНИЕ КИНЕТИКИ КОАГУЛЯЦИИ ЛАТЕКСОВ [c.167]

    Цель работы, изучение кинетики коагуляции латексов электролитами с одно- и двухвалентными катионами определение порога быстрой и медленной коагуляции расчет фактора стабильности и энергетического барьера отталкивания расчет константы скорости быстрой коагуляции и сравнение ее значения с теоретической величиной. [c.167]

    Кинетику электролитной коагуляции латексов, являющихся белыми золями, удобно исследовать оптическим методом. [c.167]

    По мере развития процесса коагуляции латекса размеры частиц возрастают, поэтому рассеяние света будет меньше, чем это следует из уравнения (VI. П). Однако оптическая плотность латекса в начальный период коагуляции линейно зависит от времени процесса т. Дифференцируя по времени уравнение (VI. 11), получаем  [c.167]

    Часть 1. Исследование влияния электролитов с одно- и двухзарядными коагулирующими катионами на кинетику коагуляции латекса [c.169]

Таблица VI. 3. Данные по исследованию кинетики коагуляции латекса Таблица VI. 3. Данные по <a href="/info/1610944">исследованию кинетики</a> коагуляции латекса
    Цйаты. Вторая стадий, характеризующаяся сохранением постоянной мутности, предшествует собственно коагуляции, т. е. коалесценции (слипанию) первичных ассоциатов и отделению их от водной фазы, что подтверждается электронно-микроскопическими исследованиями [28, 42]. На последней стадии процесса уменьшается мутность системы и происходит осветление серума. Известно, что для некоторых коллоидных систем имеет большое значение длительность именно этого периода, и время полной коагуляции при достижении минимальной мутности в этом случае принимается как основной параметр при кинетических исследованиях [43]. При коагуляции латексов момент слипания первичных агломератов в ассоциаты каучуковой фазы характеризуется разделением системы на две фазы каучука и серума (водная фаза) [44]. [c.257]


    Аппаратурное оформление процесса коагуляции латексов карбоксилсодержащих полимеров не отличается от принятой в производстве технологии выделения других типов эмульсионных каучуков. При коагуляции латексов карбоксилсодержащих полимеров в нейтральной и щелочной средах солями одно-, двух- и трехвалентных металлов могут образоваться полимерные соли, о чем свидетельствует рост вязкости полимеров. Способность к образованию труднорастворимых в воде полимерных солей в процессе коагуляции солями двухвалентных металлов была использована при получении ионтермоэластопластов (ИТЭП) [6]. [c.399]

    Часть 2. Изучение влияния электролитов на кинетические параметры коагуляции латекса [c.170]

    Часть 3. Изучение влияния степени адсорбционной насыщенности частиц молекулами ПАВ на кинетику коагуляции латекса [c.170]

    Для выполнения этой части работы определяют пороги быстрой коагуляции латексов с различной степенью адсорбционной насыщенности ПАВ (содержащих различные количества ПАБ на поверхности частиц). Используют латексы со степенью адсорбционной насыщенности 0, = О,2 0,5 и 0,8. В качестве электролита-коагулятора используют 5М раствор хлорида натрия. Для каждого образна латекса (с определенным значением 0 ) исследуют серию проб, содержащих 5 мл исходного латекса, воду и электролит  [c.170]

    Выбор аппаратурного оформления процесса коагуляции определяется его скоростью и необходимым временем контакта электролитов с латексом. При коагуляции латексов, стабилизованных алкил (арил)сульфонатами, время коагуляции составляет секунды (или доли секунды) и может быть осуществлено в системе трубопроводов [45] при коагуляции латексов бутадиен-стирольных каучуков, полученных с применением мыл карбоновых кислот, под действием электролитов (Na I + H2SO4) происходит разделение фаз — коагуляция и химическое превращение эмульгатора в свободные карбоновые кислоты, скорость которого зависит от кислотности среды и составляет несколько минут. Одновременно с этим процессом отмечено дегидратирующее действие электролитов на крошку каучука, причем скорость этого процесса также зависит от кислотности среды (pH). Технологические параметры процесса определяются выбранной технологической схемой. При выделении каучука в виде ленты крошка каучука размером 1—3 мм должна иметь определенную когезию, что сохраняется при недостаточной ее дегидратации (в ленте крошка удерживает четырехкратное количество воды) при выделении каучука в виде крошки размером 5—30 мм желательно более полное обезвоживание, чему способствует большая кислотность серума и большая длительность контакта с кислотой. [c.260]

    Муравьиная кислота является первым членом ряда насыщенных карбоновых кислот. Она отличается от остальных членов гомологического ряда тем, что обладает восстановительными свойствами, более заметно выраженными кислотными свойствами и меньшей стабильностью. В промышленности муравьиную кислоту применяют главным образом для коагуляции латекса натурального каучука и как полупродукт в производстве щавелевой кислоты и органических формиатов. [c.333]

    Полученные данные подтверждают возможность распространения физической теории на первую стадию коагуляции латексов электролитами. Константа сил ван-дер-ваальсова притяжения частиц в этой коллоидной системе, как следует из полученных [28— 30] данных, зависит ог степени насыщенности адсорбционных оболочек до состояния их, близкого к насыщению [41]. [c.257]

    При коагуляции латексов, стабилизация которых обеспечивается мылами карбоновых кислот, обычно используют смесь электролитов— хлорида натрия и кислоты (уксусной, серной). В этом случае достигают равномерного распределения обоих электролитов флокуляцию проводят в условиях, обеспечивающих наибольшую устойчивость и однородность образующегося флокулята [46], что улучшает однородность химического состава примесей в образующейся под действием раствора кислоты крошке каучука и создает оптимальные условия для отмывки примесей. [c.259]

    Способ зернистой коагуляции латекса разбавленными растворами электролитов с формированием пористой ленты каучука на лентоотливочной машине применяется для всех типов каучука, регулированных серой или сочетанием серы с меркаптаном, обладающих низкой пластичностью в условиях выделения и сушки и пластицирующихся при вальцевании. [c.382]

    Из данных о зависимости начальной скорости коагуляции или длительности первой ее стадии (первоначальный участок быстрого подъема мутности коагулируемого латекса) от концентрации и валентности коагулирующего иона можно получить кривые Ig —Ig С (рис. 11.4), где W — коэффициент замедления в зоне медленной коагуляции. Это позволяет определить пороги быстрой коагуляции (ПБК) латекса. Из многочисленных данных следует, что ПБК латексов в большинстве случаев близки к известному соотношению = onst, вытекающему из теории ДЛФО (Сй = ПБК). Отсюда следует, что протекание первой стадии коагуляции латексов связано с электростатическим механизмом устойчивости. [c.194]

    Существенно новые результаты были получены при изучении коагуляции латексов замораживанием в присутствии электролитов [537, 538]. Было установлено, что введение умеренных количеств электролитов снижает устойчивость латекса при замораживании прежде всего в соответствии с электростатическим механизмом их воздействия. Сенсибилизирующее влияние KNO3 и Ва(ЫОз)2 подчиняется закону Сг = onst отношение концентраций этих электролитов, вызывающих максимальный сенсибилизирующий эффект, равно л 70 1. Однако и в этом случае агрегация и коагуляция латекса происходит лишь при температурах более низких, чем криогидратные точки растворов этих электролитов (равные, соответственно, —2,9 и —0,7 °С), т. е. после полного промерзания свободной водной фазы. Это означает, что потеря устойчивости латекса при замораживании связана и с нарушением структуры адсорбционно-гидратных слоев на поверхности частиц. Таким образом, и при замораживании латекса электролит выполняет двоякую сенсибилизирующую роль, снижая электростатический барьер и ослабляя структурное отталкивание. [c.197]

    Латекс, который содержится в сточной воде, является иолиоцеииым сырьем, однако его концентрация мала и он поэтому не используется. Сточную воду, содержащую латекс, сливать в водоемы нельзя, и ее приходится предварительно обрабатывать, например коагуляцией латексов, в результате чего образуется шлам, который нужно затем уничтожить. [c.283]

    Существенным недостатком некаля является наличие в нем солей двух- и трехвалентного железа, замедляющих процесс полимеризации и впособствующих самопроизвольной коагуляции латекса. Так, уже при содержании в нем 0,01 % железа образуется 1,7% коагулюма, отлагающегося в аппаратуре и коммуникациях, в особенности, при отгонке непрореагировавших мономеров. [c.245]

    Технологический процесс производства эмульсионного полистирола по периодической схеме состоит из следующих стадий очистка стирола, полимеризация стирола, коагуляция латекса, промыка, фильтрование, сушка и просев полимера. [c.16]

    Для изучения кинетики электролитной коагуляции латексов ислоль-зуют оптический метод, определяя оптическую ПJ[oтнo ть серии проб латексов после введения в них электролита. Оптическую плотность измеряют с помощью установки, состоящей из фотоэлектроколориметра типа КР (см. примечание в работе 10), усилителя измерительной схемы и автоматического самопишущего потенциометра КСП-4. [c.168]

    Резул1,таты, полученные при исследовании коагуляции латекса под деСютвием электролита, записывают в таблицу (см. табл. VI. 3). [c.169]

    По полученным результатам строят графики зависимости D = f(x) при разных концентрациях электролитов. На первых линейных участках определяют dDldx)x-i.u (при всех значениях концентраций электролитов). По найденным значениям dDjdx)r-t.o строят график зависимости dDjdx)x o= I Сэл) для каждого электролита и по нему определяют пороги быстрой коагуляции латекса электролитами с одно- и двухзарядными коагулирующими катионами. Рассчитывают отношение найденных значений порогов быстрой коагуляции ki/ k2- [c.170]


Смотреть страницы где упоминается термин Коагуляция латекса: [c.254]    [c.255]    [c.259]    [c.261]    [c.263]    [c.391]    [c.425]    [c.128]   
Технология резины (1967) -- [ c.26 , c.28 , c.30 , c.41 ]

Технология синтетических каучуков (1987) -- [ c.0 ]

Технология резины (1964) -- [ c.26 , c.28 , c.30 , c.41 ]

Химия эластомеров (1981) -- [ c.21 , c.30 ]

Химия и физика каучука (1947) -- [ c.65 , c.400 ]

Общая технология синтетических каучуков (1952) -- [ c.233 , c.271 ]

Общая технология синтетических каучуков Издание 2 (1954) -- [ c.205 , c.243 ]

Основы технологии синтеза каучуков (1959) -- [ c.398 , c.428 , c.441 , c.453 , c.512 ]

Производство каучука из кок-сагыза (1948) -- [ c.7 , c.260 ]

Синтетические каучуки Изд 2 (1954) -- [ c.9 , c.394 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен-стирольные латексы коагуляция

ВЫДЕЛЕНИЕ И ОБРАБОТКА ПОЛИМЕРА Выделение полимера из латекса Общие сведения. Сущность процесса коагуляции. Виды коагуляции

Изучение коагуляции концентрированных латексов

Исследование кинетики коагуляции латексов

Исследование кинетики коагуляции латексов, стабилизованных ионогенными ПАВ

Исследование коагуляции латексов, содержащих иеионогенные ПАВ

Исследование коагуляции латексов, содержащих неионогенные ПАВ

К характеристике первой,стадии коагуляции синтетических латексов

Коагуляция

Коагуляция дивинилстирольного латекса

Коагуляция латекса и его консервирование

Коагуляция латекса порог

Коагуляция латекса самопроизвольная

Коагуляция латекса электролитная

Коагуляция латексов в виде крошки

Коагуляция латексов в виде ленты

Коагуляция латексов вымораживанием

Коагуляция латексов зернистая

Коагуляция латексов каскадная схема

Коагуляция латексов комовая

Коагуляция латексов хлопьевидная

Коагуляция латексов хлоропренового

Коагуляция синтетических латексов электролитами

Коагуляция системы латекс ПВХ кремневая

Латекс натуральный коагуляция

Латексы

Латексы синтетические коагуляция

Нефелометрическое исследование кинетики коагуляции разбавленных латексов

Определение порогов быстрой коагуляции разбавленных латексов ускоренным методом

Самопроизвольная коагуляция латекса и его консервирование

Серная кислота коагуляция латекса

Схемы коагуляции латексов и выделения каучуков

Температура коагуляции латексов

Хлоропреновые каучуки коагуляция латекса

Эмульгаторы и коагуляция латекса

Юрженко, Н. Я. Вилынанскаи, Вильшанскнй, И. Н. Кириченко, Бурымченко Исследование коагуляции синтетических латексов

Юрженко, Н. Я. Вилытюнская, Внлыпсшскпй, И. Н. Кириченко, Бурымченко Исследование коагуляции синтетических латексов



© 2025 chem21.info Реклама на сайте