Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неподеленная электронная пар

    Исходя из приведенных данных, строение молекулы Оз можно объяснить следующим образом. Центральный атом кислорода молекулы Оз находится в состоянии хр2-гибридизации (за счет 2 -, 2p .- и 2р, -орбиталей). Две из гибридных 5р -орбиталей центрального атома участвуют в образовании двух <т-связей О—О (дпух молекулярных о< и-орбиталей). Третья хр -гибридная орбиталь (молекулярная сг-орбиталь) содержит неподеленную электронную пару. 2р -Орбиталь центрального атома (расположенная перпендикулярно плоскости расположения атомов) и 2р -орбитали крайних атомов участвуют в образовании нелокализованной я-связи (молекулярная ясв-орбиталь). Таким образом, невозбужденное состояние молекулы Оз отвечает следующему заполнению молекулярных орбиталей  [c.320]


    Согласно другой точке зрения в отличие от Н2 и 2 в молекуле Ig полагают дополнительное л-связывание. Последнее возникает по донорно-акцепторному Механизму за счет неподеленной электронной пары одного атома и свободной 3 /-орби али другого. [c.287]

    У азотсодержащих ПАВ энергия связи с водой возрастает от первичного атома N к третичному и у последнего она на порядок превышает свободную энергию испарения и энергию связи с малополярной средой, поэтому можно заключить, что в образовании водородных связей с водой участвуют не атомы водорода активных групп при азоте, а неподеленные электронные пары самого азота. [c.202]

    Координационное число центральных ионов в аквокомплексах в разбавленных растворах (т. е. при достаточном количестве молекул воды) в общем случае соответствует значению характерного координационного числа катиона (акцептора) и аниона (донора). Так, для ионов АР+, СгЗ+, Со + координационное число обычно равно шести, а для Ве + — четырем. В разбавленных водных растворах, следовательно, эти ионы находятся в виде гидратированных комплексных ионов типа октаэдрического [А1(0Н г) в тетраэдрического [Ве(ОН2)4] - Для иона СГ, имеющего четыре неподеленные электронные пары, координационное число, по-видимому, равно четырем, что отвечает образованию четырех водородных связей. [c.129]

    Однако в КНз не все эти электронные пары эквивалентны. Льюисова структура КНз показывает, что в этой молекуле имеются три простые связи N—Н и одна неподеленная электронная пара. Известно, что все три атома водорода в КНз эквивалентны. Простое объяснение химической связи в КНз сводится к тому, что в этой молекуле имеются три локализованные связывающие электронные пары, находящиеся на орбиталях, образованных из 2р-орбиталей азота и 1х-орбиталей водорода (рис. 13-10). Согласно такой модели, неподеленная пара электронов находится на 2х-ор-битали атома азота. [c.559]

    Особая устойчивость таких группировок объясняется тем, что между атомами актиноида и кислорода осуществляется тройная связь. Две из связей образуются за счет двух непарных электронов атома актиноида и двух непарных электронов атома кислорода, третья связь образуется яа счет неподеленной электронной пары атома кислорода и свободной орбитали атома актиноида  [c.653]

    Здесь точками обозначены электроны, первоначально принадлежавшие атому азота, а крестиками — принадлежавшие атомам водорода. Из восьми внешних электронов атома азота шесть образуют три ковалентные связи и являются общими для атома азота и атомов водорода. Но два электрона принадлежат только азоту и образуют неподеленную электронную пару. Такая пара электронов тоже может участвовать в образовании ковалентной связи с другим атомом, если во внешнем электронном слое этого атома есть свободная орбиталь, Незаполненная 15-орбиталь у меется, например, у иона водорода Н+, вообще лишенного электронов  [c.130]


    В кислой форме и-нитрофенола на атоме кислорода уже нет отрицательного заряда. Неподеленные электронные пары кислорода гораздо труднее вовлекаются в делокализацию поэтому энергетический уровень первого возбужденного электронного состояния оказывается выше, чем у основной формы. Поглощение света имеет максимум при 320 нм, который приходится на начало ультрафиолетовой области, и вследствие этого соединение имеет бледную желто-зеленую окраску. Фенолфталеин, бесцветный в кислой среде и розовый в основной среде, имеет более сложную молекулу, которая в зависимости от кислотности среды изменяется подобным же образом. [c.307]

    По той же причине анилин-более слабое основание, чем аммиак или алифатические амины. Неподеленная электронная пара азота, которая должна притягивать протон, частично вовлекается в делокализацию на ароматический цикл, и это понижает ее способность притягивать протон и ионизовать отдающую его молекулу. [c.305]

    Теория кристаллического поля не позволяет объяснить наблюдаемую последовательность силы лигандов, т.е. их способность к расщеплению энергетических уровней. Но если принять во внимание орбитали лигандов, причем не только те, на которых находятся электронные пары, обобществляемые с металлом, но и те, где находятся неподеленные электронные пары, непосредственно не связанные с металлом, удается в гораздо большей мере объяснить последовательность энергий расщепления. Такая расширенная теория молекулярных орбиталей содержит в качестве предельных случаев как теорию кристаллического поля, так и теорию валентных связей и обычно называется теорией поля лигандов. [c.233]

    Атом а юта в молекуле аммиака связан тремя ковалентными связями с атомами водорода и сохраняет при этом одну неподеленную электронную пару  [c.401]

    Все молекулы воды, образующие небольшие (л 15) кластеры, сильно ориентированы полем иона. Среди ближайших к иону (особенно Ыа+) молекул воды преобладает ориентация, в которой неподеленная электронная пара молекул воды направлена к иону [386, 413]. Впрочем, детальная картина распределения ориентаций молекулы воды по отношению к иону зависит от выбранной модели распределения электростатических зарядов в молекуле [414]. [c.147]

    Для вычисления формальных зарядов на атомах в молекуле каждому атому приписывают по одному электрону от каждой ковалентной связи, образуемой парой электронов с участием данного атома, плюс все его неподеленные электронные пары. Тогда формальный заряд на атоме совпадает с зарядом, который он имел бы, если бы стал изолированным ионом с таким же числом валентных электронов  [c.469]

    Эти три молекулы являются изоэлектронными в них содержится одинаковое число электронов. Наличие в каждой из них восьми валентных электронов вокруг центрального атома иллюстрирует правило октета. В СН все восемь электронов попарно вовлекаются в образование связей, однако в двух остальных молекулах имеются неподеленные электронные пары. В аммиаке три связывающие электронные пары и одна неподеленная пара, а в молекуле воды две связывающие пары электронов и две неподеленные пары. [c.471]

    С—с. Это и не удивительно, если учесть больший размер атомов Si. Связывающие электроны находятся дальше от каждого из ядер, и поэтому связь оказывается менее прочной. По той же причине Si имеет меньшую энергию ионизации, чем С, и меньшую электроотрицательность (см. табл. 9-1). Но еще более важной причиной различия в свойствах углерода и кремния является аномально высокая прочность связи Si—О. В атоме углерода пустые З -орбитали имеют гораздо более высокую энергию по сравнению с 2р-орбиталями кислорода, занятыми неподеленными электронными парами, поэтому между ними не возникает взаимодейст- [c.279]

    Локализованные связи и неподеленные электронные пары. [c.550]

    Теория локализованных молекулярных орбиталей для молекул с неподеленными электронными парами 559 [c.651]

    Н. Сиджвиком и Г. Пауэллом, а в 1957 г. усовершенствован Р. Гиллеспи и Р. Найхолмом. Развитый ими подход получил название метода отталкивания валентных электронных нар (ОВЭП) его суть сводится к утверждению, что связывающие электронные пары и неподеленные электронные пары каждого атома в молекуле должны принимать пространственное расположение, которое минимизирует отталкивание всех электронных пар, окружающих данный атом. [c.491]

    Конечно, тут открывается большой простор для фантазии теоретика (деформируй отдельные электронные облака атомов молекулы так, или почти так, как хочешь, благо математика это позволяет ). Можно сосредоточить (локализовать) электронную плотность частично на атомах (в виде электронных пар внутренних оболочек атомов или неподеленных электронных пар валентной оболочки), а частично на химических связях (локализация электронов в поле двух ядер отвечает двухцентровому взаимодействию атом — атом, которое описывается классической символикой валентного штриха), а можно пользоваться и делокализованными орбиталями, охватывающими в принципе все атомные ядра молекулы. Разумный теоретик стремится воспользоваться этой свободой для того, чтобы построить модель, приемлемую для химика и пригодную для описания данного класса свойств. [c.210]


    Образование ковалентной связи может иметь и донорно-акпеп-торный механизм. В этом случае атом-донор предоставляет двух-электрОШюё" облако, а атом-акцептор - свободную орбиталь. Дон но-акцепторные связи, называемые также координационными возни1 1ЮТ, например, при образовании ионов [Ад(ЫНз)21 , [2п(NHз)4] , [СО(ЫНз)д] и др., в которых азот молекулы аммиака, обладая неподеленной электронной парой, выполняет функцию донора, а ионы Н , Ag, и Со — функцию акцептора. [c.47]

    Степень и характер основно-кислотной ионизации в системе из двух соединений водорода (I) зависят от их донорно-акцепторной активности. Так, в ряду HF—Н2О—H3N в соответствии с уменьшением числа неподеленных электронных пар возрастает сродство к протону. Поскольку сродство к протону у Н3N больше (9,3 эВ), чем у Н2О (7,9 эВ), кислоты, слабые в водных растворах, в жидком аммиаке ионизируются в значительно большей степени. Например, H N в воде — очень слабая кислота, а в жидком аммиаке ионизируется почти так же, как HNOa в воде. В жидком аммиаке кислотные свойства проявляют даже некоторые углеводороды. Вода при растворении в HF ведет себя как основание. [c.134]

    Будучи ярко выраженным донором неподеленной электронной пары атома фосфора, РО3 -ион, присоединяя протон, превращается в тетраэдрический ион РОдН или за счет окисления превращается в ион РО4. Ион 50з существует, но довольно легко окисляется до 80Г и дает 50зН . Что же касается иона СЮз, то, поскольку з/ -гиб-ридное состояние С1 не характерно, неподеленная электронная пара (5 ) сохраняет шарообразную форму и не проявляет тенденции к донорно-акцепторному взаимодействию. Поэтому ион СЮз вполне устойчив и восстановительных свойств практически не проявляет. Таким образом, в ряду РОз — 50з — СЮз восстановительная активность падает. [c.434]

    Причиной молекулярной ассоциации в водных растворах и многих жидкостях часто является возникновение водородной связи между соприкасающимися полярными частями молекул, содержащих, например, гидроксильные группы (см. стр. 164). Такая ассоциация проявляется также и при адсорбции на адсорбентах, содержащих на поверхности гидроксильные группы, например при адсорбции воды, спиртов, аммиака, аминов и т. п. на поверхностях гидроокисей, т. е. на гидроксплированных поверхностях силикагелей, алюмогелен, алюмосил икатных катализаторов и т. п. адсорбентов. Поверхность силикагеля покрыта гидроксильными группами, связанными с атомами кремния кремнекислородного остова. Вследствие того что электронная -оболочка атома кремния не заполнена, распределение электронной плотности в гидроксильных группах поверхности кремнезема таково, что отрицательный заряд сильно смеш.ен к атому кислорода, так что образуется диполь с центром положительного заряда у атома водорода, размеры которого невелики. Часто молекулы адсорбата, обладающие резко смеш,енной к периферии электронной плотностью или неподеленными электронными парами (например, атомы кислорода в молекулах воды, спиртов или эфиров), образуют дополнительно к рассмотренным выше взаимодействиям водородные [c.496]

    Завершая обсуждение структур с СЧ = 5, рассмотрим такие молекулы, в которых к центральному атому присоединены неодинаковые атомы. Примерами могут служить СНзРР и ОРд. В каждой из этих молекул наименее электроотрицательные группы занимают экваториальные положения и вызывают отклонения от идеальных значений валентных углов 90 и 120°, подобные вызываемым наличием неподеленных электронных пар. Вот почему наблюдаются следующие структуры  [c.496]

    При наличии на поверхности выдвинутых вперед катионов, как в случае цеолитов, теплоты адсорбции эфира также сильно превосходят теплоты адсорбции н-пентана (рис. ХУП1, 6в). Это показывает, что взаимодействие обладающего неподеленными электронными парами атома кислорода эфира с гидроксильными [c.498]

    Таким образом, внешние электронные слои атома кислорода и центрального атома азота оказываются заполненными здесь образуются устойчивые восьмиэлектроиггые конфигурации. Но во внешнем электронном слое крайнего атома азота размещено только шесть электронов этот атом может, следовательно, быть акцептором еще одной электронггой пары. Соседний же с ним центральный атом азота обладает неподеленной электронной парой и мажет выступать в качестве донора. Это приводит к образованию [c.131]

    Как указывалось на стр. 123, такая электронная структура атома кислорода обусловливает большие энергетические затраты на распариваппе его элект )онои, не компеисируемые энергией образования новых ковалентных связей. Поэтому ковалентность кислорода, как иравило, равна двум. Однако в некоторых случаях атом кислорода, обладающий неподеленными электронными парами, может выступать в качестве донора электронов и образовывать дополнительные ковалентн1,1е связн но донорно-акцепторному способу. [c.373]

    Как показывает эта схема, одна нз орбиталей внешнего электронного слоя гома углерода остается незанятой электронами, так что этог атом может быть цептором электронной пары. Атом же кислорода сохраняет на одной из р-ор-италей неподеленную электронную пару и обладает, следовательно, электроно-онориыми свойствами. В результате образуется еще одна ковалентная связь — онорно-акцепторная  [c.443]

    Метод валентных связей в приложении к комплексным соединениям базируется на тех же представлениях, что и в простых соединениях (см. 39—44). При этом принимается во внимание, что химические связи, возникающие ирн комплексо-образованин, нмеют доиорно-акцепторное нроисхождение, т. е. образуются за счет неподеленной электронной пары одного из взаимодействующих атомов и свободной орбитали другого атома. Рассмотрим с этнх позиций строение некоторых комплексных со-едпиеннй. [c.598]

    В молекуле аммиака атом азота находится в состоянии 5/> -гиб-риднзации, причем на одной из его гибридных орбиталей находится неподеленная электронная пара. Поэтому при донорноакцеиторном взаимодействии молекулы NH3 с ионом Н+ образуется ион NH i имеющий тетраэдрическую конфигурацию. Аналогично построен комплексный ион BF ]- здесь донором электронной пары служит анион р-, а акцептором — атом бора в молекуле ВРз, обладающий незанятой орбиталью внешнего электронного слоя и переходящий при комнлексообразовании в состояние sp -гибридизацни. [c.598]

Рис. 20-14. Описание электронного строения комплексов с октаэдрической координацией в рамках теории делокализованных молекулярных орбиталей. Те же шесть орбиталей металла, которые использовались в теории ва-лентньгх связей у2, с1 2, з, р , р и р.). теперь взаимодействуют с шестью орбиталями лигандов, на которых находятся неподеленные электронные пары, в результате чего образуются шесть связывающих молекулярных орбиталей (одна а три ст и две ст ) и шесть разрыхляющих орбиталей (а , Рис. 20-14. <a href="/info/1483687">Описание электронного строения</a> комплексов с <a href="/info/167764">октаэдрической координацией</a> в <a href="/info/1478537">рамках теории</a> делокализованных <a href="/info/1199">молекулярных орбиталей</a>. Те же шесть <a href="/info/68278">орбиталей металла</a>, <a href="/info/1768031">которые использовались</a> в теории ва-лентньгх связей у2, с1 2, з, р , р и р.). теперь взаимодействуют с шестью <a href="/info/134559">орбиталями лигандов</a>, на <a href="/info/1597898">которых находятся</a> <a href="/info/9258">неподеленные электронные пары</a>, в результате чего образуются шесть связывающих <a href="/info/1199">молекулярных орбиталей</a> (одна а три ст и две ст ) и шесть разрыхляющих орбиталей (а ,
    Применение метода ОВЭП к конкретным многоатомным молекулам начинается с подсчета числа неподеленных электронных пар их цедтраль-ного атома и числа связанных с ним атомов., Будем называть суммарное ч"исло атомов, связанных с центральным атомом молекулы, и его неподеленных электронных пар стерическим числом (СЧ). Если у центрального атома А нет неподеленных пар электронов и его СЧ определяется просто числом связанных с А атомов X, то наблюдаемое геометрическое строение молекул согласуется с указанным на рис. 11-2. В каждом из примеров, при- [c.491]

    В этой главе мы прошли долгий путь рассуждений, начав с рассмотрения сравнительной химии элементов В, С, N и Si. Углерод несомненно играет особую роль, обусловленную наличием у его атомов одинакового числа валентных электронов и орбиталей, отсутствием отталкивающих неподеленных электронных пар и способностью образовывать двойные и тройные связи. Простые алканы, или соединения углерода и водорода, с простыми связями иллюстрируют многообразие соединений, которые может образовывать углерод благодаря своей способности создавать длинные устойчивые цепи. Алкилгалогениды - это своеобразный мостик от алканов с их сравнительно низкой реакционной способностью к изобилию производных углеродов спиртам, простым эфирам, альдегидам, кетоиам, сложным эфирам, кислотам, аминам, аминокислотам и соединениям других типов, которые не обсуждались в данной главе. Способность углерода образовывать двойные и тройные связи была проиллюстрирована на примере алкенов и алкинов, она играет чрезвычайно важную роль при образовании сопряженных и ароматических молекул. [c.337]

    Теперь допустим, что шесть лигандов, каждый с неподеленной электронной парой, должны образовать шесть ковалентных связей с ионом кобальта, который использует для этого свои октаэдрически ориентированные ги-бридизованные орбитали. Если в гибридизации участвуют 4х-, 4р- [c.226]

    Атом бора имеет три валентных электрона и четыре валентные орбитали. Обычно он использует три орбитали, образуя 5р -гибриды в таких соединениях, как ВРз- Углерод имеет четыре валентных электрона и четыре орбитали. За исключением тех случаев, когда он образует кратные связи, эти орбитали используются для 5р -гибридизации. Атом азота имеет пять валентных электронов и четыре орбитали. Как правило, он образует три связи с другими атомами в структурах с тетраэдрической конфигурацией, а четвертая гибридная 5р -орбиталь у него занята неподеленной электронной парой (разд. 13-3). Углерод и азот способны образовывать двойные и тройные связи в результате я-перекры-вания, обсуждавшегося в разд. 13-4. По сравнению с длиной простой связи длина двойных связей, образуемых этими элементами, сокращается на 13%, а длина тройных связей-на 22%. Прочность кратной связи повыщается благодаря наличию электронов на связывающей молекулярной п-орбитали, возникающей в результате перекрывания атомных я-ор-биталей. Но перекрывание я-типа между орбиталями становится достаточно больщим для возникновения связи только при близком расположении атомов. По этой причине 81 и другие элементы третьего и следующих периодов неспособны образовывать кратные связи. Кремний имеет 10 внутренних электронов по сравнению с 2 в атомах С и N. Отталкивание этих внутренних электронов не позволяет двум атомам 81 сблизиться настолько, насколько это необходимо для достаточного я-перекрывания р-орбиталей и возникновения двойных связей. Несмотря на все попытки химиков синтезировать соединения со связями 81=81 и 81=С, ни одна из них до сих пор не увенчалась успехом. За небольшими исключениями, образование двойных и тройных связей ограничено элементами второго периода, в атомах которых число внутренних электронов не превышает 2. Исключения, к числу которых относятся 8=0, Р=0 и 81=0, объясняются перекрыванием между р- и -орбиталями, этот вопрос будет рассмотрен в разделе, посвященном кремнию. [c.271]

    ВИЯ. Однако в кремнии более высокий заряд ядра понижает энергию пустых З -орбиталей, и они оказываются ближе по энергии к 2р-орби-талям кислорода. Вследствие этого кислород может частично обобществлять свои неподеленные электронные пары с кремнием (рис. 21-8) в результате дативного взаимодействия, подобного Ь -> М-я- и М -> Ь-я-взаи.модействию в координационных комплексах, которое обсуждалось в разд. 20-3. Поскольку .у-орбиталь 51 простирается гораздо дальше в сторону атома О по сравнению с р-орбиталью при я-связи, атомы 51 и О не должны сближаться так сильно, как это требуется условиями образования двойной ря—ря-связи. Результатом этого обобществления неподеленных пар кислорода является то, что хотя энергия связи 51—81 на 171 кДж-мольменьше энергии связи С—С, связь 81—О прочнее, чем связь С—О, на 18 кДж-моль. [c.281]

    В самом деле, что заставляет теоретиков, занимающихся изучением строения молекул, немало сил тратить на обсуждение проблем локализации молекулярных орбиталей, выбора оптимального анализа заселенностей и т. д. Ведь в принципе расчет можно провести, используя делокализованные (канонические) молекулярные орбитали, или х<е ограничиться одноцентровым базисом, в результате чего при стандартном анализе заселенностей вся электронная плотность окажется отнесенной к одному атому молекулы. Однако в обоих случаях результаты расчетов не удается интерпретировать в рамках традиционных химических представлений, т. е. в терминах химических связей, неподеленных электронных пар и т. д. И дело не только в необходимости учета старых, давно известных фактов типа аддитивности и трансферабель-ности многих молекулярных свойств, дело еще в стремлении согласовать квантовомеханическое описание с определенным исторически сложившимся стилем химического мышления. Но мы слишком забежали вперед, вернемся к нашей теме и посмотрим, как в квантовой химии рождается понятие молекулярной структуры. [c.106]


Смотреть страницы где упоминается термин Неподеленная электронная пар: [c.401]    [c.534]    [c.139]    [c.217]    [c.610]    [c.94]    [c.530]    [c.561]    [c.562]    [c.563]    [c.565]    [c.277]    [c.281]    [c.119]   
Химия (2001) -- [ c.60 ]




ПОИСК







© 2022 chem21.info Реклама на сайте