Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура воды

    Вблизи гидрофильных поверхностей плотность воды повышена и давление на стенке выше Рй- Структурная составляющая расклинивающего давления здесь положительна (П8>0). Резкое возрастание структурных сил отталкивания при утончении водных прослоек препятствует слипанию частиц гидрофильных коллоидов и обеспечивает устойчивость тонких пленок воды на гидрофильных поверхностях. В тех случаях, когда состояние поверхности является промежуточным между гидрофильным и гидрофобным, структура воды в граничных слоях изменена незначительно и структурное взаимодействие практически не проявляется. В этом случае взаимодействие м жду поверхностями, разделяющими водную прослойку, определяется, в соответствии с теорией Дерягина — Ландау—Фервея — Овербека (ДЛФО), молекулярной и электростатической составляющими расклинивающего давления [42, 43]. [c.16]


    Такой вывод косвенно подтверждается слабо выраженным и почти линейным уменьшением диэлектрической проницаемости раствора при увеличении концентрации электролита вплоть до 0,5—1,0 М растворов. Дальнейшее повышение концентрации электролита приводит к некоторому замедлению спада диэлектрической проницаемости и отклонению экспериментальной кривой от прямой линии в сторону больших величин диэлектрической проницаемости. Предполагается, что такой ход кривых е — с обусловлен наложением эффектов упорядочения структуры воды и ее разрушения под действием введенных ионов. Если рассматривать воду как систему, состоящую из квазикристаллических образований, то при введении первых порций электролита наиболее заметно проявляется их упорядочивающее действие — образование внутреннего сольватного (замороженного) слоя молекул воды, частичная ориентация молекул воды во внешнем сольватном слое, уменьшение свободного объема жидкости. Все эти эффекты охватывают главным образом преобладающую аморфную форму воды, связь между молекулами в которой слабее, чем в квазикристаллических образованиях, и приводят к уменьшению энтропии. При возрастании концентрации электролита, когда значительная часть аморфной воды становится [c.64]

    Исследования состояния влаги в пористых телах давно уже привели к выводу об особом характере ее свойств вблизи поверхности частиц и о существовании так называемой связанной воды в дисперсных системах [1]. Отличия связанной воды от свободной объясняются перестройкой сетки межмолекулярных водородных связей в ее структуре под влиянием поля поверхностных сил. Моделирование структуры воды численными методами Монте-Карло и молекулярной динамики позволило получить некоторые количественные характеристики структурных изменений вблизи твердых поверхностей различной природы. При этом межмолекулярная водородная связь описывается различными потенциалами, правильность выбора которых проверяется путем сравнения рассчитанных и экспериментальных физических констант объемной воды. Поскольку численным методам посвящен ряд специальных статей этой монографии, остановимся только на основных результатах, важных для дальнейшего обсуждения. [c.7]

    Сложные и еще мало изученные структуры возникают в водных растворах электролитов, где молекулы воды связаны в рыхлую сетку, на структуру которой оказывают большое влияние ионы электролита. Вокруг последних образуется более плотная гидратная оболочка за счет ионно-дипольного взаимодействия. Отдельные ионы могут замещать диполь воды в ее структуре или попадать в пустоты этой структуры, в обоих случаях искажая ее своим электрическим полем. Как показывает изучение спектров комбинационного рассеяния растворов, влияние ионов на структуру воды подобно влиянию температуры, т. е. структура воды становится менее прочной и более аморфной. [c.163]


    Таким образом, можно считать, что влияние ионов на структуру воды представлено как сумма двух различных действий во-первых, происходит образование сольватных оболочек, сопровождающееся сжатием и уменьшением энтропии, а во-вторых, ионы, особенно большие и при больших концентрациях, разрушающе действуют на структуру воды, что вызывает уве.ж чение энтропии. [c.421]

    Б.4. МОЛЕКУЛЯРНАЯ СТРУКТУРА ВОДЫ [c.39]

    Антиклинальную теорию надо понимать как структурную теорию в том смысле, что 1) образование нефтяных залежей в земной коре приурочено к тем или иным тектоническим структурам, среди которых структуры антиклинального характера играют доминирующую роль, 2) в этих структурах вода, нефть и газ скопляются и распределяются под влиянием силы тяжести вследствие разницы в удельных весах и под влиянием капиллярных сил вследствие разницы в величинах поверхностного натяжения воды и нефти. [c.205]

    В этой главе собраны работы, посвященные исследованию физических свойств воды в различных модельных и природных дисперсных системах, а также вблизи активных групп макромолекул и биополимеров. Сопоставление данных, полученных разными методами и для разных объектов, приводит к общему выводу об отличиях свойств воды в граничных слоях от ее свойств в объеме. Характер этих изменений существенным образом зависит от природы воздействующих на воду групп и поверхностей. Наиболее сильное влияние на структуру воды оказывают заряженные центры и полярные группы, способные к образованию водородных связей с молекулами воды. При этом оказываются важными эпитаксиальные эффекты — число и характер расположения активных центров на твердой поверхности. [c.6]

    Применительно к биологическим макромолекулам обсуждается вопрос о коллективном действии полярных групп на структуру воды. В исследованных случаях изменений структуры воды, в первом приближении, могут быть представлены как сумма локальных изменений вблизи отдельных групп. В отличие от молекул, в двухмерной решетке активных центров эффекты топографии выходят за первый план, предопределяя, например, знак изменений плотности приповерхностных слоев. [c.6]

    На процесс м1щеллообразования в водных растворах существенно влияет структура воды, которая способствует выталкиванию углеводородных радикалов из раствора одновременно частично разрущается структура воды. Благодаря дифильному строению молекул ПАВ углеводородные радикалы, взаимодействующие между собой в мицеллах, экранируются полярными гидрофильными группами. Поэтому происходит самопроизвольное мицеллообразование с минимальным поверхностным натяжением на границе раздела мицелла—вода, сопровождающееся умень-и]ением энергии Гиббса системы. Эффектом экранирования объясняется уменьщение энтальпии в процессе мицеллообразования. Взаимодействие отдельных частей молекулы ПАВ в молекулярном растворе с растворителем характеризуется различным изменением энтальпии лиофильная часть взаимодействует с выделением теплоты, лиофобная — с поглощением теплоты. Именно поэтому энтальпия растворения ПАВ имеет небольшие положительные илн отрицательные значения (чаще всего для водных растворов она положительна). В мицеллярном растворе экранирование лнофоб-ных групп приводит к уменьшению поглощения теплоты, т. е. н снижению энтальпии системы по отношению к энтальпии образования истинного раствора. Так как мицеллообразование является процессом возникновения новой фазы, то его можно сравнить с расслоением системы, т. е. с процессом ее упорядочения. Для таких процессов характерно уменьшение энтропии. Таким образом, самопроизвольное мицеллообразование по сравнению с образованием молекулярного раствора обусловлено уменьшением энтальпии [см. уравнение (УГ25)]. [c.297]

    В разделах 1 и 6 этой главы рассматривается, как влияют изменения структуры воды на ее течение в тонких порах и пленках. Действие поверхностных сил, характеризуемых расклинивающим давлением тонких прослоек, определяет равно- [c.6]

    Это можно объяснить тем, что полифункциональная молекула является как бы жесткой матрицей , которая благодаря наличию многих центров связывания стабилизирует структуру окружающей воды в некой заданной конфигурации. В результате уменьшается релаксационная составляющая сжимаемости и теплоемкости. Температурная зависимость сжимаемости воды приближается к линейной, что свойственно нормальной жидкости. Заметим, что определению стабилизация структуры воды разные авторы придают различный смысл. Здесь под ним понимается сохранение геометрии водородных связей и уменьшение разнообразия возможных конфигураций. [c.55]

    Другим характерным свойством связанной воды — воды граничных слоев вблизи гидрофильных поверхностей, по современной терминологии, — является ее пониженная, по сравнению с объемной водой, растворяющая способность. Это также является следствием измененной структуры воды. Как известно, под действием внешнего давления и температуры меняется растворяющая способность и объемной воды. Пониженную растворяющую способность граничных слоев воды использовали, в частности, для количественных оценок содержания связанной воды в дисперсных системах. При этом в качестве индикаторов, слабо проникающих в связанную воду, брали электролиты и сахарозу [1]. [c.9]


    Понижение диэлектрической проницаемости граничных слоев воды следует также из молекулярно-динамических оценок изменений вращательной подвижности диполей воды [4] п подтверждается исследованиями структуры воды в тонких прослойках методом неупругого рассеяния нейтронов и ЯМР. Так, для дисперсий кремнезема времена релаксации молекул воды в граничном слое 1 нм в 5—10 раз превышают объемные значения [39]. Методом электронного спинового резонанса показано, что подвижность спиновой метки снижается с уменьшением радиуса пор силикагеля от 5 до 2 нм [40]. [c.14]

    Изменение структуры воды в тонких а-пленках на поверхности кварца подтверждено смещением полосы валентных О—Н-колебаний на 100 см в длинноволновую область ИК-спектра, что свидетельствует об усилении межмолекулярных водородных связей в структуре а-пленок [45]. [c.18]

    Измерения термоосмоса в пористых стеклах показали [23], что в широких порах (/->50 нм), где граничные слои еще не перекрыты, АН<0, Это значит, что структура воды в одиночных граничных слоях укреплена по сравнению с объемной. Напротив, в тонких порах (г<10 нм) рассчитанные по уравнению (1.8) средние значения АН были положительными. Это говорит о преобладающем влиянии эффекта ослабления межмолекулярных связей при перекрытии граничных слоев. [c.22]

    Повышение температуры приводит к постепенному снижению скорости термоосмоса. При температуре выше 60 °С термоосмотическое течение практически прекращается, что свидетельствует об уменьшении различий в структуре воды граничных слоев и объемной воды. [c.22]

    Водородные связи играют гораздо более важную роль для живых систем, чем можно предположить только по структуре воды. Они лежат в основе главного способа связывания белковых молекул, о котором будет рассказано в гл. 21. Без таких связей между атомами кислорода карбонильных групп и атомами водорода аминогрупп не могли бы надлежащим образом возникать спиральные полипептидные цепи, образующие молекулы белков. [c.621]

    Повышенное или пониженное значение плотности прочно связанной воды по сравнению с обычной жидкой водой будет зависеть от того, какой из двух факторов — усиление энергии связи или разупорядочивающее влияние подложки — окажется преобладающим. Для слоистых силикатов (см. табл. 2.2),кремнезема [87], цеолита NaX [88] плотность адсорбированной воды выше единицы. Это обусловлено высокой энергией связи при относительно небольшом разупорядочивающем влиянии подложки. Последнее объясняется хорошим структурным соответствием между узором поверхностных атомов кислорода (и гидроксильных групп в случае кремнезема) слоистых силикатов и кремнеземов, с одной стороны, и элементами структуры воды — с другой. Недаром получившая широкое распространение первая модель структуры адсорбированной слоистыми силикатами воды представляла собой плоский вариант структуры льда [89]. Н. В. Белов подметил идентичность формы и размеров полостей цеолита X и крупных додекаэдрических молекул воды Н20 20а<7 и на основе этого предположил, что [c.35]

    Таким образом, из совокупности данных, полученных методом молекулярного щупа , следует, что гидратационные изменения свойств воды вблизи атомных групп любой природы сосредоточены главным образом в первой гидратной сфере, и, возможно, частично захватывают вторую. Иначе говоря, гидратационные возмущения структуры воды около молекул растворенного вещества локальны. [c.50]

    В сильном электростатическом поле иона структура воды значительно меняется, что приводит к потере ею аномальных свойств и, как следствие, к линеаризации температурных зависимостей сжимаемости и объема. [c.54]

    Более выгодно складывается ситуация для тонких прослоек и пленок жидкостей, где можно ограничиться меньшим числом молекул. Однако при этом возникают и дополнительные трудности, связанные с учетом взаимодействий молекул не только между собой, но и с ограничивающими прослойку поверхностями. Под влиянием поверхности происходит изменение структуры граничных слоев воды, что и рассматривается в первом разделе этой главы. Как в нем показано, под влиянием твердой поверхности формируется устойчивая по отношению к внешним воздействиям ориентационная структура воды, отличная от ее изотропного состояния в объеме. [c.116]

    Из приведенных данных но исследованию устойчивости дисперсии алмаза в растворах K I следует, что в зависимости от pH дисперсионной среды и концентрации электролита и, как следствие этого, от состояния поверхности дисперсия алмаза ведет себя либо как лиофилизованная (кислая область), либо как иопно-стабилизированная (щелочная область) дисперсная система, обнаруживая тем самым различную чувствительность к добавлению индифферентного электролита. В зависимости от состояния поверхности частиц алмаза (соотношения числа диссоциированных и недиссоциированных поверхностных групп), возможности образования водородных связей между молекулами воды и поверхностными группами алмаза, а также от концентрации добавленного электролита меняется структура воды в ГС, и, как следствие, соотношение между молекулярной, ион-но-электростатической и структурной составляющими энергии взаимодействия частиц. [c.184]

    В исследованной нами дисперсии алмаза структура воды в ГС, по-видимому, определяется как состоянием поверхности частиц алмаза, обусловливающим возможность образования [c.186]

    Структура воды. Как уже указывалось, молекулы Н2О в кристаллической решетке льда связаны друг с другом водородными связями. Кристаллическая структура льда весьма далека от плотнейшей упаковки. При плотнейшей упаковке молекул Н2О лед имел бы плотность 2,0 г/см , тогда как в действительности плотность льда равна 0,9 г/см  [c.156]

    Существование индукционных периодов при коагуляции замораживанием показывает, что перестройка структуры воды в граничных гидратных прослойках на поверхности частиц замороженного латекса к структуре обычного льда требует известного времени. Как видно из данных, приведенных в табл. 11.3 и рис. 11.2, электролит способствует этой перестройке при введении электролита в латекс количество незамерзающей (гидратной) воды в нем снижается. [c.197]

    Первые попытки использовать данные по температурной зависимости химических сдвигов в жидкой воде для идентификации какой-либо из многочисленных моделей структуры воды не привели к успешному результату полученные данные можно одинаково хорошо объяснить с помощью совершенно различных моделей— и непрерывных и дискретных [581]. В ряде работ из данных по временам релаксации на ядрах Н, Н(О) и Ю с помощью соотношений [582] вычислены времена корреляции [c.230]

Рис. 54. Элемент структуры воды Рис. 54. <a href="/info/702690">Элемент структуры</a> воды
    Введенные в полярную жидкость ионы нарушают структуру растворителя на больших расстояниях вокруг ионов. На это указывают результаты рентгенографических и спектроскопических 1 следований растворов и некоторые другие факты (например, увеличение энтропии растворителя при высоких концентрациях ионов). Особенно заметно разрушающее действие на структуру воды ионов больших размеров, тогда как ионы небольшого размера помещаются в пустотах воды и мало изменяют ее структуру. Координационное число ионов средних размеров, особенно одновалентных, в разбавленных растворах равно четырем. Очевидно, они просто замещают молекулы воды в целом, не изменяя структуры последней. Правда, они притягивают и ориентируют находящиеся вблизи молекулы воды и, образуя сольватную оболочку, несколько искажают структуру воды в ближайшем окружении (уменьшается объем, теплоемкость, энтропия, сжимаемость раствора). Однако можно считать, что структура воды в растворе искажена незначительно и да51 е в сольватной оболочке напоминает структуру чистой воды. [c.421]

    Вода способна образовывать соединения е рядом веществ, находящихся при обычных у< ловия х в газообразном состоянии и обычно не обладающих большой химической активностью. При мером могут служить гидраты Хе-бНоО, СН4-6Н20, sHj l IBHgO. Такие соединения образуются в результате заполнения молекулами газа межмолекулярных полостей, имеющихся в структуре воды, и называются соединениями включения, или к л а -тратами. Клатраты — неустойчивые соединения и могут существовать при сравнительно низких температурах. [c.212]

    Анализ протекающих процессов затруднен, однако, тем, что свойства воды в дисперсных системах в результате ее взаимодействия с поверхностью частиц или со стенками пор отличаются от свойств объемной воды. Изучение свойств воды в дисперсных системах ведется уже давно, но лишь в последнее время благодаря развитию физико-химических методоц удалось получить существенно новые и более полные результаты. Уточнены ранее сложившиеся представления о свойствах связанной воды. Это относится прежде всего к данным об ее плотности, которые чаще всего оказывались сильно завышенными. Как сейчас становится ясным, изменения плотности не превышают нескольких процентов от плотности объемной воды. Значительно меньшими оказались и изменения вязкости, сложились иные представления о неподвижности граничных слоев воды. Многие процессы переноса оказались более сложными, чем это представлялось ранее. Это связано с выяснившейся необходимостью учета влияния образования и перекрывания в тонких порах диффузных адсорбционных слоев молекул и ионов, изменения физических свойств и структуры воды как функции расстояния от поверхности. Резко возрос в последнее время интерес к структурным силам, возникающим при перекрывании граничных слоев воды с измененной структурой. Эти силы, в добавление к молекулярным и электростатическим, играют важ- [c.4]

    Обнаруживаемые изменения структуры воды в граничных слоях не только сказываются на ее физических свойствах, но и вызывают изменение расклинивающего давления в тонкой прослойке [42, 43]. Этот эффект возникает при перекрытии граничных слоев с измененной структурой в достаточно тонких прослойках. Структурные изменения прослойки, происходящие при перекрытии, ведут к изменению ее свободной энергии Fs, которая становится функцией толщины прослойки /г. Термодинамическим следствием этого является появление структурной составляющей расклинивающего давления П5 = — др1/ дк)т, величина и знак которой зависят от характера происходящей при перекрытии структурной перестройки. Так как AFs = AHs—TASs (где ДЯ — изменение энергии межмолекулярных связей, а Д5 — изменение энтропии в прослойке при изменениях взаимной ориентации молекул, характеризуемой параметром порядка), знак производной дР /дк зависит от изменений энтропии и энтальпии прослойки воды при изменении ее толщины. [c.15]

    Таким образом, чисто структурные соображения диктуют необходимость существования внешней части граничного слоя, являющегося как бы связующим элементом между резко различающимися структурами адсорбционно и осмотически связанной воды. Стремление к сочетанию с обеими указанными категориями связанной воды естественно приводит к относительно разупорядоченной структуре внешней части граничного слоя число молекул воды с разорванными Н-связями в ней выше, чем в объемной жидкости. Поскольку действие активных центров поверхности на молекулы воды внешней части граничного слоя ослаблено, то ее плотность должна быть ниже, чем у объемной воды, что и подтверждается уже обсуждавшимися данными [104]. Анализируя структуру воды вблизи твердой заряженной поверхности, Ю. В. Гуриков [126] также пришел к трехслойной модели связанной воды за слоем прочно связанных с поверхностью молекул воды располагается слой с нарушенной структурой, затем следует невозмущенный раствор. [c.42]

    Необходимо знать, чем определяется изменение величины АХй при изменении температуры—изменением физических свойств Х1Л воды в гидратной оболочке или изменением числа молекул воды в оболочке Пй Решение этого вопроса упрощается благодаря установленному выше факту локальности гидратной оболочки. В самом деле, локальность возмущения структуры воды означает, что гидратной оболочке можно приписать естественную границу — первый (или второй) минимум функции радиального распределения. Отсюда следует очевид- [c.51]

    Аналогичные выражения справедливы для теплоемкости п коэффициента теплового расширения. Структурные величины обычно сильно зависят от температуры. При комнатных (и более низких) температурах структурные вклады аномально велики. Так, в случае сжимаемости KstrlKoa ., b [170], в то время как для большинства других жидкостей это отношение меньше единицы [171]. В конечном счете все аномалии воды обусловлены лабильностью структуры воды в отношении воздействия теплом или давлением. В ряду наиболее характерных аномалий воды — резко нелинейная температурная зависимость объема, сжимаемости и теплоемкости с положительной второй производной. Это проиллюстрировано на рис. 3.7 на примере объема и сжимаемости воды и, для сравнения, сжимаемости нормальных жидкостей — спиртов и ртути [172—175]. [c.52]

    Структурные изменения воды в ГС подтверждаются спектральными методами [479—484], а также согласуются с результатами расчетов структуры тонких прослоек методами молекулярной динамики и Монте-Карло. Изменение структуры воды на больших расстояниях от поверхности частиц прямо подтверждено методом ядерного магнитного резонанса [66, 71, 73, 315]. Таким образом, во многих экспериментальных исследованиях обнаружено существенное отклонение структурно-чувстви- [c.170]

    Системы с пониженной размерностью. Обычные теории межмолекулярного вклада в протонную магнитную релаксацию, предложенные для трехмерных систем, не применимы для систем с пониженной размерностью, например для одномерных (Ш) или двумерных (2D) систем. Вместе с тем при исследовании структуры воды в гидрофильных объектах системы такого типа встречаются довольно часто например, вода, адсорбированная на плоской подложке, вода между плоскими пластинками слоистых силикатов или вода в плоских бислоях лиотропных жидких кристаллов — все это характерные примеры 2D-систем. Обзор теорий магнитной релаксации для систем с пониженной размерностью дан в работе [607]. Интересной особенностью неограниченных систем с пониженной размерностью является то, что для них функция спектральной плотности при малых частотах расходится и I (со- 0)->оо. Для ограниченных систем (когда величина d на рис. 14.1 конечна) расходимости при малых частотах нет, но для таких систем на кривой зависимости T i(t ) наблюдаются два минимума, соответствующие условиям (uqT 1 и (ooTiat l, где -Tiat ii /(4D, ). Детальное обсуждение экспериментальных результатов по ЯМР релаксации в ограниченных двумерных системах приведено в работе [608]. [c.237]

    НОИ структура воды перестраивается в более плотную структуру, подобную структуре кварца. При более высоких температурах происходит разрыв водородных связей и образование более плотного расположения молекул. Однако структура надкритического пара, как и воды, изучена недостаточно и пока нет общепринятой структуры, особенно при высоких температурах и давл1ениях. [c.20]

    Важную роль водородные связи играют в структуре воды и льда. На рис. 1.70 показан фрагмент структуры льда. Каждый атом кислорода в этой структуре тетраэдрически связан с четырьмя другими атомами, между ними располагаются атомы водорода. [c.133]

    С возрастанием концентрации электролита зона неискаженной и частично искаженной структуры воды сокращается. При концентрации, отвечающей связыванию всех молекул растворителя в первичные сольватные оболочки, достигается граница полной сольватации. Понятие об этой грагшце было введено К- П. Мищенко и А. М. Сухотиным. Ей отвечает такая концентрация раствора, которой соответствует сумма координационных чисел катионов и анионов, т. е. отсутствие свободного растворителя и наиболь- [c.171]

    Весьма важную роль водородная связь играет в структуре воды и льда. В кристаллах льда каждый атом кислорода тетраэдрически связан с четырьмя другими атомами кислорода между ними располагаются четыре атома водорода, два из которых соединены с данным атомом кислорода полярной ковалентной связью, длина [c.80]

    Тщательное исследование коллоидных систем (включая эмульсии) нужно начинать с рассмотрения природы химических соединений на поверхности частиц, так как они оказывают основное влияние на взаимодействие частиц. Из-за отсутствия аппаратуры, пригодной для прямого исследования, данные о структуре и составе поверхностного слоя должны быть получены нри изучении адсорбции, -потен-циала и т. д. Правда последние работы по ядерно-магнитному резонансу и спектроскопии дисперсных систем, вероятно, позволят получить информацию о структуре воды около поверхностей раздела фаз (Клиффорд и др., 1965 Клиффорд и Петика, 1964, 1965а, 1965Ь). [c.83]

    Известный химпк-коллондник Дерягин считает, что гидрофильные поверхности влияют на структуру воды на значительном расстоянии — возможно несколько сотен ангстрем от межфазной поверхности (Дерягин, 1964). [c.83]


Библиография для Структура воды: [c.334]   
Смотреть страницы где упоминается термин Структура воды: [c.60]    [c.52]    [c.231]    [c.171]    [c.83]   
Смотреть главы в:

Явления переноса в водных растворах -> Структура воды

Современные проблемы электрохимии  -> Структура воды

Неорганические стеклообразующие системы -> Структура воды

Структурная неорганическая химия -> Структура воды

Электронное строение и химическая связь в неорганической химии -> Структура воды

Водный режим растений -> Структура воды

Водный обмен растений -> Структура воды


Основы общей химии (1988) -- [ c.107 ]

Электрохимия растворов (1959) -- [ c.289 ]

Введение в молекулярную теорию растворов (1959) -- [ c.132 ]

Явления переноса в водных растворах (1976) -- [ c.36 , c.65 , c.394 , c.398 , c.410 , c.518 ]

Введение в молекулярную теорию растворов (1956) -- [ c.132 ]

Физическая химия неводных растворов (1973) -- [ c.42 ]

Жизнь микробов в экстремальных условиях (1981) -- [ c.392 , c.413 ]




ПОИСК





Смотрите так же термины и статьи:

Арефьев. Тонкая структура линии Релея в растворе вода — триэтиламин вблизи критической температуры расслаивания

Влияние воды на механические свойства и дисперсную структуру горных пород. — В. Ю. Травкин, Н. В. Перцов, Б. С. Коган

Влияние зарядов ионов на вязкость органических ионов на структуру воды

Влияние зарядов ионов на вязкость растворенных молекул на структуру воды

Влияние коррекционной обработки питательной воды на состав и структуру отложений в тракте блоков

Влияние магнитного поля на структуру и свойства воды

Влияние молекул растворенного вещества на структуру воды

Влияние растворенных веществ на структуру воды

Влияние растворенных ионов на структуру воды

Внутренняя структура молекул воды

Вода влияние анионов на структуру

Вода стеклообразная, структур

Вода структура и свойства

Вода, структура

Вода, структура

Вода, структура вблизи температуры плавления

Вода, структура влияние температуры

Вода, структура льдоподобная

Вода, структура первичная

Вода, структура поверхностного слоя

Вода, структура предразрушение

Вода, структура разрушение под действием ионо

Вода, структура разрыхление

Вода, структура специфичность

Вода, структура стабилизация

Вода, структура тетраэдрическая

Вода, структура упорядочивание

Вода, термодинамическое изучение структуры

Воздействие магнитного поля растворенных ионов на структуру воды

Изменение структуры пор обработкой водой

Изменение структуры тонких прослоек и граничных слоев воды

Изменения структуры и свойств воды в растворах

Изотопный состав и структура молекул воды

Исследование пористой структуры силикагеля по изотерме адсорбции паров воды

Казанский. О поровой структуре и связи воды с цементными камнями на основе шлаковых вяжущих

Льда структура в жидкой воде

МОЛЕКУЛЯРНАЯ СТРУКТУРА ВОДЫ

Меншуткина влияние структуры воды

Моделирование конформации и пространственного строения гексамеров воды по структуре циклогексана в рамках объемной гексагонально-клатратной модели воды

Моделирование структуры воды по термодинамическим параметрам и диэлектрической проницаемости нормальных парафинов

Модель водо- и нефтегазоносной породы с различной структурой глинистого цемента

Молекулярная структура и свойства чистой воды

Молекулярная структура простых углеводов и их взаимодействие с водой

Некоторые сведения о структуре воды в жидкой фазе

ОГЛАВЛЕНИЕ Водородная связь и структура воды

Определение структурной воды методом нейтронографического исследования белка. Анализ структуры комплекса карбоксимиоглобинвода. Б. Шенборн, Дж. Хансон

Особенности растворимости газов в воде и структура воды

Оценка коэффициента распределения пептидов в системе октанол-вода по корреляционному соотношению структура-свойство Цыганкова

Преобразование энергии в плоскопараллельных структурах ассоциатов воды

Природа взаимодействия вода — углеводород изменение структуры поверхности

Проявление структуры воды в эффектах гидратации

Прыжковая электронная проводимость в сверхпроводящих структурах ион-кристаллических ассоциатов воды

Растворимость органических веществ в воде Влияние структуры водных растворов на растворимость органических веществ

Саркисов Г. Н., Маленков Г. Г., Дашевский В. Г., Дьяконова Л. П. Исследование структуры воды в машинных экспериментах

Свойства воды, ее структур и полиморфизм

Связь воды в кристаллических структурах цеолитов

Слой воды, ориентированный по структуре галлуазита фиг

Стекла структура воды

Структура водородных связей в воде

Структура воды i раствора

Структура воды в жидком состоянии

Структура воды в поверхностном слое

Структура воды выводы, основанные на свойствах воды

Структура воды жидкостей

Структура воды и водных растворов

Структура воды и водных растворов влияние ионов

Структура воды и водных растворов геометрические

Структура воды и водных растворов кластерные

Структура воды и водных растворов континуумные

Структура воды и водных растворов модели

Структура воды и гидрофобные взаимодействия

Структура воды и ее свойства

Структура воды квазикристаллическая

Структура воды концентрированных растворо

Структура воды молекулы воды

Структура воды на поверхностях раздела вода — коллоид

Структура воды нормальных жидкостей

Структура воды однородная

Структура воды растворителя в растворе

Структура воды растворов неэлектролитов

Структура воды растворов электролитов

Структура воды. Соли полистиролсульфоновой кислоты и щелочных металлов

Структура димера молекулы воды

Структура жидкой воды

Структура жидкой воды и водных растворов органических веществ О влиянии структуры водных растворов и растворимости на адсорбцию растворенных в воде веществ

Структура жидкой воды, молекулярная фиг

Структура жндкой воды

Структура и биологические функции воды

Структура и динамика связанной воды Многообразие портретов связанной воды

Структура и свойства воды и растворов

Структура и физические свойства воды ъ Структура воды

Структура изменение при сорбции воды

Структура ион-кристаллического ассоциата воды

Структура кластеров, содержащих молекулы воды. — Г. Г. Маленков

Структура молекул воды и характер ее взаимодействия с растворен- i ными веществами

Структура молекулы воды и явление гидратации в водных растворах

Структура распределения частиц воды на экране крионасоса

Структура чистой воды

Структура чистой жидкой воды

Структуры льда и воды

Существующие модели молекулярных ассоциатов жидкокристаллических структур) воды

Сходство групп между тетраэдрическим каркасом стекла и тетраэдрической структурой воды

Термодинамическое изучение структуры воды

Упрочнение льдоподобной структуры структуры воды

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА И СТРУКТУРА ВОДЫ Вода — аномальная жидкость

Физико-химические свойства и структура соединений с водородной связью Структура растворителя и термодинамические свойства растворов электролитов в воде, метиловом спирте и ацетоне. К П. Мищенко

водой электронная структура

энергий и структура воды



© 2025 chem21.info Реклама на сайте