Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Выделение низших парафинов

    Практически наибольщий интерес представляет методика выделения парафиновых углеводородов нормального строения из содержащих их смесей. Для этого должны быть выполнены некоторые условия и в первую очередь высокая концентрация мочевины и низкая температура. Наиболее целесообразно проводить такое фракционирование с применением насыщенных водных растворов мочевины. [c.56]


    Хорошо поддаются депарафинизации этим методом дистилляты дизельных топлив. Вследствие низкой вязкости этих продуктов и крупной кристаллической структуры содержащегося в них парафина их можно перерабатывать при значительно более низких температурах, чем парафиновые дистилляты. Нами была показана возможность высокоэффективной депарафинизации дизельных топлив фильтрпрессованием, а также вакуумной фильтрацией без растворителей при температурах до —15° и —25° с получением депарафинированных продуктов с такими же температурами застывания и с одновременным выделением концентрата (гача) легкоплавкого парафина. [c.95]

    Большое количество работ было проведено по изучению алкил-карбонатов, примененных в качестве растворителей для выделения ароматических углеводородов [41, с. 319—328 72 81—86]. Алкил-карбонаты характеризуются селективными свойствами по отношению к ароматическим углеводородам, высокой плотностью, высокой температурой кипения и низкой теплоемкостью. Исследование диаграмм равновесия этилен- и пропиленкарбонатов с парафиновыми и с ароматическими углеводородами Се — Се показало, что бинодальные кривые имеют закрытый характер. Поэтому прямой экстракцией получить экстрактную фазу, не содержащую парафиновых углеводородов, невозможно [41, с. 319—328]. Наиболее пригодным в качестве растворителя оказался пропиленкарбонат. [c.67]

    Потеря подвижности нефтепродуктов может быть вызвана либо выделением твердых парафиновых углеводородов, либо повышением их вязкости при низких температурах. [c.26]

    После этого общего введения необходимо в первую очередь рассмотреть возможности получения низко- и высокомолекулярных парафиновых углеводородов, затем методы выделения парафинов среднего молекулярного веса путем экстрактивной кристаллизации с мочевиной. [c.17]

    Если пары смолы получены в достаточно мягких условиях, то их смолистые компоненты и воскообразные вещества остаются неразло-женными. Конденсируясь, они мешают кристаллизации парафина. В связи с этим затрудняется последующая фильтрация. Поэтому необходимо разрушить указанные вещества, что достигается деструктивной или пиролитической перегонкой. Смолу нагревают сначала в трубчатой печи и фракционируют для выделения масляной фракции с низким содержанием парафина, парафинового гача и пека. Отбор масляной фракции ведут до затвердения капли дистиллята на льду. После этого выкипает фракция, называемая парафиновой массой. Эту [c.49]


    Поэтому все попытки перенесения опыта переработки нефти и высокотемпературных дегтей на низко- и среднетемпературные в целом до сих пор не увенчались успехом. Обработка таких фракций различного рода химическими реагентами для выделения одной какой-либо группы веществ, например, фенолов, оснований, кислот, углеводородов и т. д., хотя и упрощает полученные продукты тем, что этим путем удается получить группы веществ, близких по своим химическим свойствам, но каждая группа все еще содержит соединения многочисленных классов. Так, например, фенольное масло содержит одноатомные, дву- и более атомные фенолы, тиофенолы и другие вещества в виде примесей углеводородная часть — олефиновые, парафиновые, нафтеновые, ароматические и другие углеводороды. Даже после тонкой фракционной разгонки в узких температурных пределах выделенные классы также являются неоднородными так, например, низкотемпературные нафтены содержат пента- и гексагидроароматические углеводороды непредельные — пенте-ны, гексены, олефины с различным числом двойных связей и различным их расположением и т. д. Таким образом, с нащей точки зрения, обречены на неуспех те работы, которые направлены на получение индивидуальных соединений непосредственно из низкотемпературных дегтей или их прямогонных фракций. [c.22]

    Легкий каталитический газойль обычно используется в качестве компонента дизельного топлива или как сырье для термического крекинга. Особенностью легкого каталитического газойля является его более низкое цетановое число по сравнению с соляровыми дестиллатами прямой перегонки нефти,- Как показали исследования Пучкова П. Г. и других, дестиллаты прямой перегонки, выделенные из нефтей парафинового основания, имеют цетановое число 66, а нафтеново-ароматического основания 37. Полученные при крекинге соляровых дестиллатов этих же нефтей легкие каталитические газойли такого же фракционного состава, как и исходные соляровые дестиллаты, имели цетановые числа соответственно 47 и 24, т. е. на 13—19 пунктов ниже. Более подробные данные [c.66]

    В связи с этим из растворов в жидких углеводородах твердые компоненты масляных фракций выделяются при более высоких температурах. Высокая растворимость твердых углеводородов в неполярных растворителях требует для их выделения глубокого охлаждения. Этим объясняется высокий ТЭД (15—25°С) при депарафинизации в растворах нафты и сжиженного пропана, что делает процесс неэкономичным из-за больших затрат на охлаждение раствора. В сжиженных углеводородах парафинового ряда растворимость твердых углеводородов изменяется с ростом молекулярной массы растворителя, причем при переходе от метана к бутану растворимость твердой фазы увеличивается, а начиная с пентана уменьшается (рис. 45) [32]. Этим объясняется более низкий ТЭД в растворе пропана, чем во фракции бензина. Неполяр- [c.139]

    С целью увеличения выработки кокса и улучшения показателей работы отечественных установок необходимо для каждой из них осуществить специальную подготовку сырья. Способ подготовки следует подбирать на каждом НПЗ в зависимости от свойств исходной нефти и схемы ее переработки. Подготовленное сырье коксования должно иметь высокую коксуемость, низкое содержание серы, металлов и золы. Химический и фракционный состав сырья должны обеспечивать его максимальную ароматизацию, испарение и заданное разложение в реакционном змеевике печи. При этих условиях в камере увеличивается доля реакций уплотнения, идущих с выделением тепла, что улучшает тепловой баланс камеры и позволяет повысить качество кокса (механическую прочность, летучие вещества) [1,2, 7—9]. Этим требованиям наиболее полно могли бы удовлетворять остатки малосернистых и малозольных смолистых нефтей. Однако на отечественных заводах в основном перерабатываются или легкие малосернистые парафинистые нефти, или тяжелые смолистые сернистые нефти. Поэтому в первом случае необходимо снизить содержание парафиновых углеводородов, плохо подготовленных к образованию кокса в камере и способствующих закоксовыванию труб печи. Во втором — подготовка сырья должна обеспечить уменьшение содержания в коксе серы и металлов, при сохранении высокого выхода. За рубежом, особенно в США, вопросам подготовки придают большое значение сырье коксования дифференцируют в зависимости от направления использования кокса [7, 9]. Основную массу кокса для алюминиевой промышленности получают из прямогонных остатков, а кокс для графитированных электродов (премиальный) — из дистиллятных крекинг-остатков [c.16]


    При коксовании гудрона высокосернистой арланской нефти (угленосной свиты) нафтено-парафинового основания 32% общей серы выделилось в виде сероводорода, т. е. почти столько же, сколько и при коксовании гудрона малосернистой эхабинской нефти нафтенового основания. При этом относительное содержание серы в коксе было 31%, т. е. меньше, чем при коксовании гудрона туймазинской нефти, но больше, чем при коксовании гудрона эхабинской нефти. О том, что сернистые соединения арланской нефти характеризуются крайне низкой термической стабильностью, известно было из многочисленных работ, в которых отмечалось, что уже при нагревании сырой нефти до 120 °С происходит выделение из нее сероводорода. [c.65]

    Наиболее широко распространенным растворителем для выделения ароматических углеводородов является диэтиленгликоль. На рис. 54 приведены данные по относительной растворимости в диэтиленгликоле ароматических, нафтеновых и парафиновых углеводородов, содержащихся в бензиновых фракциях [59]. Вследствие различной растворимости низко- и высококипящих парафиновых углеводородов в диэтиленгликоле можно сконцентрировать в экстракте ароматические и низкокипящие парафиновые углеводороды с высокими октановыми числами. Экстракт после отделения диэтиленгликоля является компонентом бензина, а углеводородная часть рафината вновь подается на риформирование. В результате вторичного риформинга содержание нормальных и изопарафиновых углеводородов приближается к равновесным концентрациям. Протекают также реакции гидрокрекинга и дегидроциклизации [59, 60]. [c.131]

    Как показано в предыдущих главах, при помощи комплексообразования с карбамидом удается осуществлять не только разделение на группы углеводородов нормального строения и углеводородов изо- и циклического строения, но и выделять индивидуальные к-парафины. В последнем случае требуется сочетать по крайней мере два процесса — образование карбамидного комплекса для отделения к-парафинов от других соединений и четкую ректификацию, позволяющую выделить индивидуальные к-парафины из их смеси. Весьма заманчива разработка таких методов выделения индивидуальных к-парафинов (или получения узких фракций, концентратов), в которых способность карбамида образовывать комплексы с к-иарафинами использовалась бы не только для отделения к-иарафинов от соединений других классов, но и для непосредственного фракционирования их. Более простой задачей, имеющей уже сегодня практическое значение, является получение непосредственно на установках карбамидной депарафинизации дизельного топлива не мягкого парафина, представляющего собой смесь к-парафинов, выкипающую в пределах выкипания дизельного топлива, а более узких фракций. В этом случае роль других процессов фракционирования, например четкой ректификации, была бы сведена к минимуму. Достоинство таких методов заключается прежде всего в возможности подвергать фракционированию как низкокипящие, так и высококипящие к-парафиновые углеводороды, а также в том, что подобное фракционирование можно вести при низких температурах и атмосферном давлении, для чего требуется относительно несложная аппаратура. [c.198]

    Из полученных данных можно заключить, что наименее растворимы в ацетоне нафтено-парафиновые фракции. С ними вместе частично выделяются ароматические углеводороды, десорбируемые как изооктаном, так и бензолом. Из раствора концентрата сураханской нефти в ацетоне ароматических углеводородов и смол выделялось значительно меньше, чем из бакинского автола 10. Из рис. 35 и 36 следует, что наиболее прочно удерживаются в растворе ацетона, даже при очень низких температурах, ароматические углеводороды и смолы. Изменение свойств узких фракций выделенных нафтенов при понижении температуры охлаждения раствора автола 10 в ацетоне приведено на рис. 37, из которого видно, что с понижением температуры раствора уменьшается молекулярный вес, понижаются анилиновые точки и температуры застывания нафтенов плотность и коэффициент преломления их [c.165]

    Летными испытаниями реактивных топлив различной химической природы установлено, что коэффициент выделения тепла с увеличением высоты полета более резко снижается у ароматических углеводородов, чем у нафтеновых и парафиновых. Расчеты энергетического коэффициента с учетом снижения тепловыделения в высотных условиях показали, что наиболее низкими энергетическими характеристиками, особенно в высотных условиях, обладают ароматические углеводороды реактивных топлив [35] > [c.18]

    Эффективность выделения асфальтенов в значительной степени зависит от природы и вытекающих отсюда сорбционных свойств асфальтенов. Известно, что все асфальтены обладают низкой сорбционной способностью к парафиновым и нафтеновым углеводородам. Чем выше ароматичность асфальтенов, тем выше их адсорбционная способность в отношении высокомолекулярных ароматических и гетероциклических соединений. [c.435]

    Выход толуола за одно пропускание составлял 31—40 вес.°/о, считая на исходную гептановую фракцию, или до 7%, считая на бензин. Количество отлагающегося кокса при принятом режиме составляло 10% в случае узких фракций (92— 101° или 95—105°) и 12—15% в случае широких фракций (85— 105°). Авторы считают, что предпочтительнее всего работать о фракцией 90—105°. В этом случае удается захватить максимальное количество содержащихся в нефти парафиновых и циклогексановых углеводородов, которые в данных условиях могут дать толуол. Низкое начало кипения фракции нежелательно, так как углеводороды, не образующие толуола, распадаются и образуют много газа и кокса, а значительное количество более тяжелой фракции в исходном сырье затрудняет выделение толуола при перегонке. Вообще говоря, более узкие фракции, чем 90—105°, приводят к уменьшению выходов толуола, считая на бензин, а более широкие — к повышенному газообразованию. [c.112]

    Нормальные парафины от С1, до С34 могут существовать в трех и, возможно, в четырех кристаллических модификан,иях. Вблизи температуры плавления гексагональные кристаллы обладают устойчивой формой, и, так как исследование при помощи ренгеновых лучей показало, что оси парафиновых цепей перпзндикулярны к плоскости, содержащей концы цепей, эта форма была названа вертикальной и была уподоблена плотно упакованным шестигранным карандашам [22]. При низкой температуре кристаллы обычно приобретают орторомбическую форму, а при кристаллизации из раствора при низкой температуре они могут приобретать форму, соответствующую моноклинической или триклинической системе. При этих условиях другие авторы не наблюдали моноклинических кристаллов [12]. При температурах на 2—15° нин е точки плавления нормальные парафины обнаруживают точки перехода от гексагональной системы к другим кристаллическим модификациям, что С( провождается выделением тепла в количестве около 20 кал/е [21]. Разность между температурами точек перехода и температурами плавления уменьшается по мере увеличения молекулярного веса, и можно считать, что нормальные парафины с 36 атомами углерода и более не будут иметь точек перехода. При температурах между точками перехода и плавления парафины прозрачны, во при дальнейшем охлаждении становятся непрозрачными. Товарные парафины, обычно [c.44]

    Парафино-нафтеновые углеводороды, полученные при адсорбционном разделении на силикагеле (АСК), отличаются высоким числом симметрии по-р.ядка 150) и низким значением интерцеита рефракции"(г,- 1,0327—1,0388), ято, доказывает присутствие значительного количества би- и полициклических нафтеновых углеводородов. Парафино-нафтеновые углеводороды, выделенные из фракций валенской нефти, отличаются низко температурой застыпапия (значительно более низкой, чем у других исследованных нефтей), ири этом иара-фино-нафтеновые углеводороды, выделенные из фракций валенской нефти, имеют, в отличие от углеводородов из других нефтей, более низкую температуру застывания, чем исходные фракции. Но самое основное отличие нарафино-нафте-новых углеводородов, полученных из фракций валенской нефти, заключается а следующем они не образуют комплекс с карбамидом. Это свидетельствует о том, что фракции валенской нефти практически не содержат парафиновых углеводородов нормального строения. [c.410]

    Проведя полное гидрирование смол, авторы получили нафтеновые углеводороды высокой вязкости с низким (О—37) индексом вязкости. Это подтверждает полицикличность исследованных смолистых веществ, а также косвенно указывает на присутствие в них ко,ротких боковых парафиновых целей. Нафтены, получаемые при гидрировании высокомолекулярных ароматических углеводородов, выделенных из тех же нефтей, заметно отличаются от полученных при гидрировании смол их индекс вязкости значительно более высок, что, очевидно, связано с меньшей цикличностью исходных ароматических углеводородов к наличием в них более длинных боковых цепей. Исследование инфракрасных спектров у-казанных выше смолистых веществ показало большое сходство между собой этих продуктов все они соде,ржат ароматические кольца (полосы 1600 см ) и группы СНз и СНа (полосы 1380 см , 1460 см ) в насыщенной части всех смол преобладают группы СНа, что подтверждает, по мнению авторов, наличие в смолах нафтеновых циклов. В отличие от ароматических углеводородов для исследованных образцов смол в инфракрасной части спектра обнаружены полосы, характерные для связей С—О (1720 см- ). Полос, ха,рактерных для связей 5—Н, О—Н и N—Н, в спектрах изученных смол не обнаружено. [c.31]

    Растворимость всех комшонеитов масляных фракций в полярных растворителях уменьшается с понижением темтературы. Так, растворимость углеводородов и смол в полярных растворителях в широком интервале темшератур показана [6] на примере разных групп кампонентов, выделенных из концентрата сураханской отборной нефти (рис. 7). Парафиновые углеводороды масел при низких температурах и соответствующей кратности растворителя почти, полностью выделяются из раствора. Их растворимость в полярных растворителях так же как и части циклических углеводородов с длинными боковыми цепями является результатом действия дисперсионных сил. Растворимость остальных циклических углеводородов и смол определяется индукционным, а смол— ориентационным взаимодействием. Действие полярных сил в этом случае настолько велико, что даже пр,и низких температурах вследствие аосоциации молекул растворителя не происходит вы- [c.50]

    Парафино-нафтеновые углеводороды, полученные при ад-сорбциопиом разделении па силикагеле (марка АСК), отличаются высоким числом симметрии (порядка 150) и низким значением интерцепта рефракции Г (1,0327—1,0388), что характеризует присутствие значительного количества би- и нолицг[к-лических нафтеновых углеводородов. Аналогичные углеводороды, выделенные нз соответствующих фракций туймазинской нефти, так же как и из других исследуемых в этом отношении нефтей, имеют число симметрии, не превышающее 63, и интерцепт рефракции выше 1,0415, что характеризует присутствие наряду с нафтеновыми углеводородами значительного количества парафиновых углеводородов. Парафино-нафтеновые углеводороды, выделенные из фракций валенской нефти, отличаются тем- [c.617]

    Анализ по методу ndM [21 группового состава масляной части узеньской нефти (XV горизонт), выделениой экстракционной обработкой метанол-ацето-новой смесью по методике, разработанной в Гипровостокнефти [3], показал преимущественное содержание парафиновых углеводородов. Низкое содержание ароматических и повышенное содержание парафиновы.ч углеводородов является одной нз отличительных характеристик нефтей п/о Мангышлак по сравнению с нефтями других районов СССР. [c.78]

    Использование катализаторов [136], способных ускорять ионные реакции, приводит к новым превращениям углеводородов, например к образованию углеводородов С4 и С5 из гексана без выделения осколков С] и С2. Механизм этих реакций пока не установлен, но при его устаиовлении ценный изобутан можно будет получать из сырья меньщей молекулярной массы. Как правило, при гидрокрекинге циклического сырья образуются циклические продукты, а из парафинового сырья — парафинистые продукты. Таким образом, характеристика продуктов гидрокрекинга в значительной мере зависит от вида сырья. Обычно неконденсированные полициклические ароматические соединения дают гораздо более низкие выходы угле водородов ряда бензола, чем конденсированные соединения. [c.212]

    В то же время, подобрав соответствующие условия, можно получить комплексы и с нормальными парафинами, содержащими менее шести атомов углерода в цепи. Так, Домаску и Кобе [27] удалось получить комплекс с н-пентаном при низкой температуре и под большим давлением. Шленком [28] были подобраны условия для получения карбамидных комплексов, хотя и неустойчивых, из нелетучих соединений, содержащих в цепи всего три атома углерода. Предложен способ выделения карбамидом низкомолекулярных углеводородов, содержащих в неразветвленной цепи молекулы от двух до семи атомов углерода, из смеси углеводородов, являющихся жидкостями в нормальных условиях. Для образования комплекса с такими низкомолекулярными углеводородами реакцию необходимо проводить в присутствии парафинового углеводорода, твердого при нормальных условиях, а также в присутствии небольшого количества полярного жидкого растворителя. Образующийся комплекс выделяют из реакционной смеси, после чего из него регенерируют углеводороды низкого молекулярного веса [29]. [c.18]

    В качестве смесей брались нафтено-парафиновые и ароматические углеводороды, в каждом случае из одного и того же масла. Как показывают цифры табл. 139, добавление малых концентраций ароматических углеводородов к нафтено-парафиновым фракциям почти не сказывается на уровне вязкости при плюсовых температурах. Повышение концентрации ароматических до 10—15% влечет за собой рост вязкости смеси. Естественно, что добавление ноли-цпклпческих ароматических углеводородов в большей степени увеличивает вязкость, чем малоциклических. Для нафтено-нарафиновых фракций, выделенных из масел, не деиарафинированных п содержащих некоторое количество твердых углеводородов и, таким образом, склонных к структурообразованию, добавление ароматических соединений снижает вязкость при низких температурах, так как ароматические углеводороды затрудняют структурообразование (табл. 139). [c.380]

    Крупнокристаллический парафин удаляют из маловязких дестиллатов в одну или две стадии без разбавления дестиллатов растворителями. Первая стадия — выделение основной массы твердого парафина. Для этой цели нефтяную фракцию, например так называемый парафиновый дестиллат, охлаждают до температуры, например, 2—6°. Затем выкристаллизовавшийся твердый парафин отделяют от масла на обычных рамочных фильтрпрессах. Отфильтрованное масло обычно имеет еще высокую температуру застывания, например от 9 и до 15°. Для получения из него смазочных масел с более низкой температурой застывания необходимо провести вторую стадию депарафинизации — при более низкой температуре. Так, фильтрация того же дестиллата при —16° дает масло с температурой застывания до —15° при плотности 0,891—0,900 и вязкости ВУ50 = 2—2,3.  [c.367]

    Парафин с температурой плавления 44—47° может быть получен из фракций парафинового дистиллята, выделенных в пределах 320—450° для алиюртовской нефти (скв. 100) и 325—475° для малгобекской нефти (скв. 750-7). Однако вследствие низкого содержания в дистилляте товарного парафина мазут малкобек-ской и алиюртовской нефтей верхнемеловых отложений использовать для получения парафинового дистиллята нецелесообразно. [c.13]

    Метод карбамидной депарафинизации может быть применен при переработке дизельных топлив и легких масел с целью получения депарафинизированных продуктов с низкими температурами застывания (40° С), а также для выделения парафиновых углеводородов из бензино-керосиновых и дизельных фракций [27 ]. [c.45]

    Полученные компоненты реактивного и дизельного тоалив часто имеют недостаточно низкие температуры застывания. Такое случается, когда в состав фракций входит большое количество парафиновых углеводородов нормального строения. Товарные топлива, должны застывать при температурах от -45 до -60 С. Д/гя снижения гемперагуры засгывания достаточно выделить эти углеводороды из исходной фракции. Полученные жидкие парафиновые углеводороды (С (гС 8) с чистотой до 99% могут использоваться в производстве биологически разлагаемых поверхностно-активных веществ (сульфатов, высших жирных спиртов и др.), белково-витаминных концентратов. Фракция, оставшаяся после выделения жидких парафинов (денормализат), является компонентом низкозастывающих топлив. [c.33]

    Разделенде фракций а-олефинов осуществляют вытеснительным (без проявителя) и элюентным (с проявителем) адсорбционным хроматографированием. Однократное вытеснительное хроматографирование на мелкопористом силикагеле обеспечивает достаточно полное выделение моноолефинов из их фракций с концом кипения примерно до 180 °С. Для более высококипящих фракций с увеличением длины цепи уменьшается различие в адсорбируемости моноолефиновых и парафиновых углеводородов, увеличиваются вязкость и температура застывания. Все это определяет необходимость применения для указанных фракций элюентного хроматографирования и рехроматографирования с низким соотношением адсорбат адсорбент. [c.51]

    Экономическая оценка всех четырех указанных процессов дана в табл. 81, Б. Комбинированные процессы, дающие более высокие выходы высокооктановых бензинов, имеют определенные преимущества перед одноступенчатым процессом риформинга. При получении бензинов с более высокими октановыми числами преимущества указанных процессов еще более очевидны. Вариант 3, для которого характерны более низкие капиталовложения и эксплуатационные расходы, может быть наиболее целесообразным, особенно для заводов, имеющих резервное оборудование для термических процессов. Однако наиболее высокими потенциальными возможностями в смысле улучшения октановой характеристики и выходов бензина располагают процессы, включающие выделение ароматических углеводородов. В варианте 2 при использовании того же самого сырья октановое число бензина может быть увеличено до 105 (без добавки ТЭС), если риформингу подвергать большие количества рециркулирующего парафинового рафината. Применив в варианте 1 рециркуляцию продуктов вторичного риформирования с подачей их на установку аросорб , можно добиться получения бензина (упругость паров по Рейду 517 мм рт. ст.) с октановым числом 108 (без ТЭС) и выходом 787 м /сутки при помощи установки 954 м /сутки [130]. При получении бензинов с лучшими антидетонационными [c.643]

    В другой работе X. И. Арешидзе и Е. М. Бенашвили [17] показана возможность количественного выделения тем же методом н-алканов из нефтяных дистиллятов, отличаюшихся очень низким их содержанием. ОбъектОхМ исследования являлась фракция 200—250°С норийской нефти, содержащая 2,5% н-алканов. В результате вакуумной разгонки выделенной смеси алканов были получены и идентифицированы углеводороды от н-декана до н-пентадекана включительно, соответствующие по своим физическим свойствам индивидуальным н-парафиновым углеводородам. [c.17]


Смотреть страницы где упоминается термин Выделение низших парафинов: [c.94]    [c.182]    [c.75]    [c.201]    [c.102]    [c.167]    [c.210]    [c.74]    [c.145]    [c.562]    [c.177]    [c.130]    [c.122]    [c.147]    [c.64]    [c.78]   
Смотреть главы в:

Химия и технология основного органического и нефтехимического синтеза -> Выделение низших парафинов




ПОИСК





Смотрите так же термины и статьи:

Выделение парафиновых



© 2022 chem21.info Реклама на сайте