Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение дисперсности частиц размером более 2 мкм

    Наряду с качественными и количественными методами определения механических примесей существуют методы определения ситового состава частиц. Один из них [156] основан на применении анализатора — электронного счетчика частиц. Прибор автоматически регистрирует сотни тысяч частиц размером более 1 мкм. Для классификации загрязнений по размерам частиц образец топлива прокачивают через счетчик несколько раз. Общая длительность анализа 1 ч. Дисперсионный состав можно определить также с помощью установки, основанной на измерении интенсивности свечения конуса Тиндаля, которая находится в прямой зависимости от степени дисперсности микрозагрязнений [157]. Для автоматического контроля дисперсионного состава твердых микрочастиц разработана ультразвуковая установка [158]. С помощью электронного счетчика подсчитывается и автоматически записывается число изображений микрочастиц определенно-,го размера. Установка может определять дисперсионный состав т вердых загрязнений в статических и динамических условиях. Перед работой установку калибруют. [c.177]


    Опыты показали, что броуновское движение совершенно не зависит от природы вещества оно изменяется в зависимости от температуры, вязкости среды и размеров частиц. Под действием беспорядочных ударов молекул растворителя частицы дисперсной фазы также совершают беспорядочные движения. Перемещение в пространстве этих частиц совершается в результате усредненного действия всей совокупности ударов за время наблюдения (в 1 с частица испытывает около ударов). Число ударов, приходящихся с разных сторон, при малых размерах частиц обычно неодинаково и они передвигаются в пространстве по сложной траектории (рис. 87). Если размеры и масса частиц дисперсной фазы превышают определенные пределы, вероятность взаимной компенсации ударов оказывается значительно выше. Вот почему частицы размером, например, 4—5 мкм совершают только небольшие колебательные движения около некоторого центра. При более крупных размерах частиц броуновское движение не наблюдается. [c.300]

    Таким образом, если взять отношение оптических плотностей для двух дисперсных систем малорастворимых веществ с одинаковым размером частиц, оно будет равно отношению концентраций, а при одной и той же концентрации отношение оптических плотностей пропорционально размерам частиц. Размер частиц в турбидиметрическом анализе не имеет такого значения, как в нефелометрии. Однако, если дисперсная система содержит частицы более 0,1 "к, появляются отклонения от закона Рэлея, что приводит к нарушению линейности градуировочного графика. Воспроизводимость результатов при определении веществ турбидиметрическим методом составляет 5%. [c.90]

    Важным фактором, влияющим на достижение заданной дисперсности частиц на выходе бисерной мельницы, является разброс их размеров в перерабатываемом материале. Это объясняется тем, что в диспергаторах типа БМ (бисерные мельницы) разрушение агломератов твердых частиц в перерабатываемом материале происходит за счет сдвиговых усилий, возникающих между мелющими телами, не только перемешивающимися определенным образом в пространстве между смесительными элементами ротора, но и вращающимися при этом вокруг своей оси. Поэтому чрезмерное количество агрегатов большого размера препятствует воздействию сдвиговых усилий между каждой парой вращающихся мелющих тел на малые и средние по размерам агломераты. Иными словами, основная энергия диспергирования тратится на разрушение крупных агломератов, не обеспечивая разрушения более мелких [80]. [c.109]


    Корреляционные формулы (13.4)—(13.6) так же, как и более точные формулы для расчета переноса в дисперсной фазе, содержат ряд величин, которые являются функциями размера частиц. В поли-дисперсной системе существует определенное распределение частиц по размерам. В этих условиях существует два различных подхода к вычислению усредненной скорости межфазного обмена. Во-первых, можно разбить частицы на фракции со сравнительно узким интервалом изменения диаметра и, вычислив коэффициенты переноса для [c.250]

    Реже применяются седиментации в жидкости — до 300 мк и отдувка или седиментация в газе — до 200 мк. Седиментационные методы определения дисперсного состава широко описаны в специальной литературе. Методы определения размеров частиц под микроскопом весьма трудоемки и утомительны, но часто бывают незаменимыми. Достаточно подробные наставления по измерению дисперсности микроскопическими методами имеются в работах [103, 107]. Для частиц размером более 100 мк очень удобны, по нашему мнению, инструментальные микроскопы, которые позволяют определить не только средний диаметр, но и другие геометрические размеры отдельных зерен. [c.69]

    Непосредственный обмер отобранных порций частиц измерительным инструментом применим для частиц 3 мм и выше [64]. Более редко используют седиментацию в жидкости — до 200 мкм и отдувку или седиментацию в газе — до 200 мкм. Для часТиц размером более 100 мкм очень удобно по нашему опыту ие-пользовать инструментальные микроскопы, которые позволяют определять не только средний диаметр, но и другие геометрические размеры отдельных зерен, необходимые для оценки их коэффициентов формы. Для определения дисперсного состава доменного кокса применяют сита большого размера с квадрат- [c.52]

    Наиболее важной физической характеристикой твердой фазы является ее гранулометрический состав. Обычно твердая фаза представляет собой полидисперсную систему, размеры частиц которой имеют широкий интервал значений. Для характеристики их дисперсности используют кривые распределения частиц по размерам. Разработано много методов определения размеров частиц для построения указанных кривых [27]. В практике центрифугирования суспензий наиболее широко распространены методы ситового анализа (с минимальным размером ячейки сита 71 мкм, реже 40 мкм), микроскопического анализа фракций с частицами -размером более 2 мкм и седиментометрического анализа фракций с частицами размером от 70—100 до 1 мкм. Анализ мелких фракций (менее 40 мкм) твердой фазы суспензии, подлежащей разделению в осадительных центрифугах, должен проводиться седиментометрическим методом. Этот метод позволяет определять так называемый эффективный размер частиц, соответствующий диаметру сферических частиц с тождественными гидродинамическими свойствами. [c.8]

    Фильтрация суспензий другими материалами, которые применяются для фильтров тонкой очистки, представ-, ляет более сложный процесс, так как частицы загрязнителя удерживаются не только отсеиванием, но и адсорбцией. Кроме того, строение таких материалов, с точки зрения размеров пор или каналов, не является однородным. Поэтому четкой границы между размерами удерживаемых и неудерживаемых частиц не существует. Это видно из характеристик отсева некоторых материалов, которые представляют зависимость количества неудерживаемых частиц от их размера (фиг. 12). Эти характеристики получены методом аналогичным-описанному методу, который применялся для определения тонкости отсева фильтровых сеток. В качестве загрязнителя в этом случае и в дальнейшем применялся кварцевый песок, который используется при изготовлении зубных цементов. Для получения требуемой дисперсности этот песок дополнительно измельчается в шаровой мельнице. Определение дисперсности загрязнителя и [c.42]

    Способность дисперсных систем сохранять определенное распределение частиц по объему дисперсионной среды называется седиментационной устойчивостью. Грубодисперсные системы седиментационио неустойчивы, их частицы оседают под действием силы тяжести. Молекулярные системы (газы, растворы) обладают очень высокой седиментационной устойчивостью. Седиментационная устойчивость коллоидных систем зависит от размеров их частиц чем меньше размер частиц, тем более устойчив коллоидный раствор. [c.193]

    Точность определения дисперсности седиментационным методом зави- сит от условий выполнения анализа [32]. Следует также иметь в виду, что для частиц размером менее 50 ммк и более 100 мк наблюдаются заметные отклонения от закона Стокса. [c.25]

    Количественный дисперсионный анализ заключается в разделении исследуемого вещества на отдельные фракции, содержащие частицы, размеры которых лежат внутри определенного интервала, и установлении процентного содержания отдельных фракций в исследуемой дисперсной системе. Чем уже выбран интервал размеров отдельных фракций, тем более полные данные получают для характеристики исследуемой поли-дисперсной системы по размерам частиц. [c.6]


    Коллоидное состояние характеризуется определенной дисперсностью (раздробленностью) вещества. Вещество в этом состоянии диспергировано до очень малых частиц или пронизано тончайшими порами эти частицы и поры невидимы в оптическом микроскопе, но превышают по размерам обычные молекулы. Поскольку раздробленное вещество находится всегда в какой-либо среде, с которой оно в большей или меньшей степени взаимодействует, свойства его нельзя рассматривать в отрыве от этой среды. Следовательно, коллоидные или дисперсные системы состоят из двух (или более) фаз дисперсной фазы (одной или нескольких)—совокупности частиц или пор — и дисперсионной среды, т. е. являются гетерогенными. Таким образом, коллоиды — это не вещества (как считали раньше), а гетерогенные системы, содержащие вещества в высокодисперсном состоянии. [c.5]

    При степени превращения 40—70% на образование частиц микрогеля указывают изменения температуры стеклования (Тс) в системах с разной конверсией. Анализ спектров мутности композиций показал, что в системе присутствуют сшитые частицы, а не просто ассоциированные агрегаты, что размер частиц микрогеля составляет около 6,5 нм, а их размер мало меняется при изменении в широком интервале глубины реакции. Только при достижении определенной концентрации размер этих дисперсных частиц начинает быстро возрастать, а их число уменьшаться. Расположение области гелеобразования зависит от способа получения полиуретана. В случае двухстадийного процесса частицы микро-геля появляются при большей степени превращения, чем при одностадийном, что связано, очевидно, с более выраженным микрорасслоением системы в последнем случае. При одностадийном синтезе в системе наряду с молекулами полиуретана существуют молекулы непро- [c.67]

    Остановимся более подробно на вопросе определения эффективности классификации дисперсных частиц по размерам, то есть на поиске вида функции Ф(/) [уравнение (3.36)] для фонтанирующего слоя с малым содержанием дисперсной фазы. Рассмотрим случай независимого движения фаз При смысловой постановке задачи бу-  [c.171]

    С этой целью воспользуемся более подробной ячеечной моделью аппарата и циркуляционные кристаллорастители с восходящим и нисходящим прямотоком разобьем на ряд отдельных ячеек, как это показано на рис. 3.13. Предполол<им, что размеры ячеек достаточно малы и характеризуются постоянным по высоте содержанием дисперсной фазы. Остановимся на расчете вероятности перехода дисперсной частицы определенного размера из ячейки с номером i в ячейки (—1 и г-Ь 1. Моделировать движение частицы внутри ячейки будем с учетом случайных воздействий F в уравнении (1.125) на нее со стороны сплошной фазы, связанных с пульсациями объемного содержания дисперсной фазы. Возмущающее воздействие со стороны сплошной фазы проявляет себя только в момент взаимодействия дисперсных частиц. Отсюда вероятность того, что некоторая частица изменит свою скорость на пути dx, равна произведению полного сечения взаимодействия частицы с двухфазной средой S вз (X, Е) на длину dx [23] или, для некоторого конечного пути л 1, [c.185]

    Для частиц, размер которых равен или больше длины световой водны, онределение размера частиц по светорассеянию может быть осуществлено исходя из общей теории светорассеяния (как это сделано, например, в работах Марона по определению дисперсности латексов). Однако такие определения, как правило, связаны с весьма сложными расчетами, и поэтому более целесообразным в этом случае является непосредственное измерение размеров частиц под микроскопом. [c.40]

    Современные представления о формировании металлцеолитных катализаторов, восстановлении катионов, взаимодействии центров различной природы, связи каталитической активности с размером частиц во многих отношениях недостаточно адекватны. Необходимо разработать более совершенные способы определения дисперсности различных металлов, надежные методы анализа сплавов на цеолитах, изучить влияние различных реакционных систем на размеры кристаллов металлов и характер их активных центров и др. [c.177]

    Объекты сравнительно низкой дисперсности (более 200 мк) подвергают простому ситовому анализу при помощи набора металлических или шелковых сит. Исследуемый порошок просеивают через сита с отверстиями определенного, все уменьшающегося размера. Доля каждой фракции устанавливается взвешиванием. Определение размеров порошков возможно с помощью микроскопа, снабженного окуляр-микрометром, или определением скорости просасывания воздуха, а также фильтрованием жидкости через слой порошка в некоторых стандартных условиях. Определяя дисперсность, используют также различные-варианты отмучивания —осаждения (седиментации) вещества в статических условиях в стоячей воде или в условиях встречного поток воды. Особенно широко распространен для дисперсионного анализа микрогетерогенных систем (частицы от 0,1 до 200 мк) метод седиментации в статических условиях с непрерывным взвешиванием осадка. Этот прием известен под названием седиментационного анализа. [c.233]

    Как указано выше, необходимо знать вид функции [4, 1] для нахождения интегральной ширины линии и определения размеров некоторой средней частицы, характеризующей степень дисперсности порошка. Тем более важно знать [4, 1] возможно более точно с учетом всех поправок на посторонние для целей исследования факторы, когда экспериментальная кривая [4, 1] используется для нахождения функции распределения частиц по размерам W(Л), где Л — параметр размера. Эта задача стоит перед рентгенографией давно, но успешного разрешения в области интерференционного рассеяния она еще не получила. [c.40]

    Механическая стабильность смазок зависит от типа загустителя, размеров, формы и прочности связи между дисперсными частицами. Уменьшение размеров частиц загустителя (до определенных пределов) способствует улучшению механической стабильности смазок. Смазки, имеющие мыльные волокна с большим отношением длины к диаметру, более стабильны. Увеличение концентрации загустителя также повышает механическую стабильность смазок. На тиксотропные превращения. смазок влияют состав и свойства дисперсионной среды, присутствие ПАВ, наполнителей и композиций добавок. [c.289]

    Это уравнение применимо для определения приращения внутреннего давления жидкости со сферической поверхностью 1/г характеризует дисперсность частицы О. Таким образом,чем выше дисперсность, тем больше внутреннее давление. Например, в капле воды размером 10 см дополнительное давление (Др) достигает 15 МПа. Оно составляет небольшую долю от общего внутреннего давления воды (более 1000 МПа), но вполне достаточно для того, чтобы обусловливать некоторые явления, в том числе обеспечение сферической формы капель. Такое же дополнительное давление характерно и для пузырьков воздуха в жидкости. [c.103]

    Эмульсиями называются дисперсные системы, в которых обе фазы—дисперсная и дисперсионная—жидкие (Ж1->Ж2), причем обе жидкости взаимно нерастворимы или, точнее, мало взаимно растворимы. Жидкость дисперсной фазы распределена (взвешена) в дисперсионной в виде мельчайших капелек белее или менее правильной сферической формы (в разбавленных эмульсиях— идеально шаровой формы), как результат компенсированного действия поверхностных сил между разнородными жидкостями. Размер дисперсных частиц (капелек, глобул) в эмульсиях обычно колеблется в пределах от 1 до 50 мк (например, жировые капельки в коровьем молоке 5—6 мк), но могут быть приготовлены эмульсии и более высокодисперсные, т. е. по степени дисперсности они, как и суспензии, примыкают к золям—эмульсоидам. Так как частицы эмульсий видимы в обыкновенный микроскоп и к тому же имеют правильную форму, то определение степени дисперсности их не представляет затруднений. [c.247]

    В настоящее время окончательно установлено, что броуновское движение есть результат суммирования ударов о коллоидную частицу со стороны беспорядочно движущихся молекул дисперсионной среды. Если частица дисперсной фазы велика, то она каждое мгновение испытывает со всех сторон миллионы подобных ударов. Эти удары или взаимно уравновешиваются, или равнодействующая их настолько мала, что не в состоянии привести в движение частицу, обладающую большой массой (броуновское движение не может быть обнаружено на частицах, размер которых превышает 4 i). Чем меньше частица, тем неравномерность ударов молекул с разных сторон более вероятна. Если частица мала, то в каждый данный момент она может получить с одной какой-нибудь стороны более сильный суммарный толчок, чем с других сторон. Вследствие этого частица переместится в определенном направлении. Из-за полной беспорядочности теплового движения молекул дисперсионной среды равнодействующая их импульсов на коллоидную частицу за бесконечно малый промежуток времени будет хаотически изменяться по величине и направлению. Этим и объясняется беспорядочность броуновского движения. Чем меньше коллоидная частица, тем более интенсивное движение она совершает. Это связано с тем, что несоответствие в силе ударов с разных сторон для малых частиц выражено особенно резко. [c.275]

    Для каждой НДС существует определенное распределение частиц в дисперсионной среде. При введении модификаторов происходит самопроизвольное диспергирование более крупных частиц с получением дисперсной системы с заметной концентрацией частиц дисперсной фазы, существенно превосходящих по величине молекулярные размеры. Наилучшие результаты диспергирования получаются при совместном применении механических и химических методов (комбинированное диспергирование). Дис-пергационные методы просты в применении, но они не могут быть использованы для получения дисперсных частиц размерами менее 1 —100 нм. В последнем случае применяются конденсационные методы. [c.65]

    Устойчивость против расслоения МДС характеризуется временем, в течение которого ССЕ проходят путь под действием сил тяжести и сопротивления среды. В случае установившегося движения ССЕ в вязкой среде для определения т используют закон Стокса. На значение т ока.зываег в наибольшей степени влияние радиус ССЕ (как и на структурно-механическую прочность). Чем меньше размер дисперсных частиц, тем больше значение т и соответственно дисперсная система менее склонна к расслоению, т. е, более устойчива. Таким образом при т- оо нефтяная днсперсная система устойчива к расслоению, а при т- О—неустойчива. Следует здесь оговориться, что ])счь идет об относительной устойчивости дисперсных систем. В принципе, НДС с термодинамической точки зрения являются неустойчивыми системами. [c.131]

    Определение дисперсного состава пром. пылей, особенно при их высоких концентрациях (неск. десятков мг/м и более), требует отбора пробы из газового потока с послед, суспендированием пыли в жидкой или газовой фазе, для чего используют спец. приборы (см. Дисперсионный анализ). Для измерений размеров частиц без нарушения их агрегатного состояния (это важно для пылей конденсац. происхождения) широко применяют ручные приборы-им па кто ры (рис. 2), в к-рых сепарацию пыли осуществляют непосредственно в ходе отбора пробы, что позволяет оценивать размеры агрегированных (скоагулированных) частиц. Пыль, присутствующая в пробе, разделяется на 5-8 фракций при пропускании газа через последовательно установленные сопла постепенно уменьшающегося диаметра. Частицы соответствующего размера осаждаются на плоских подложках, размещенных напротив сопл. Содержание разл. фракций находят по привесу подложек за время отбора [c.145]

    Сепарацию порошков карбонильного железа в вертикальных насадках целесообразно производить щ тех случаях, когда из порошка необходимо -полностью выделить более дисперсную его фракцию, ограниченную определенным максимальным размером частиц. В этом ттро-цессе лри воздействии газового пото1ка на взвешенные частицы порошка более дисперсная его фракция уносится газом и затем выделяется в соответствующих фильтрах. Сепарация осуществляется обычно в вертикальных цилиндрических насадка.х (трубах) в качестве рабочего газа берут воздух или азот. [c.158]

    И. В. Мелихов и Г. Эвальд наблюдали интенсивный изотопный обмен между твердой и жидкой фазами суспензии при механическом перемешивании. Причем оказалось, что при более интенсивном перемешивании возрастает интенсивность изотопного обмена. Этот факт авторы объясняют двумя причинами во-первых, откалыванием частиц размером меньше 10 см и тем самым возбуждением оствальдова созревания и, во-вторых, ускоренной самодиффузией изотопа в объеме кристаллов осадка. Заметим, что авторы пришли к выводу об ускоренной самодиффузии индикаторного изотопа в объеме кристаллов осадка при их интенсивном перемешивании не из прямых опытов по определению коэффициента диффузии в кристалле, а косвенно, на том основании, что наблюдавшийся ими довольно большой (10%-ный) и быстрый (t С, 10 сек) обмен между твердой и жидкой фазами нельзя объяснить за счет малоэффективного и медленного механизма оствальдова созревания. Известно, что диффузия в кристаллах чрезвычайно низкая [10]. Поэтому вероятность ее ускорения под воздействием ударов небольшая. Более вероятно допушение, что существует еще один механизм рекристаллизации в дисперсных системах, интенсивность которого значительно выше интенсивности оствальдова созревания. [c.44]

    Термин коллоидная химия по сути есть пережиток того времени, когда полагали, что коллоиды - класс определенных химических веществ. Последующие исследования показали, что вещество любого химического состава, в том числе кристаллическое, может быть получено в состоянии, аналогичном по ряду основных свойств коллоидам . В да.чьнейшем стало общепризнанным, что коллоидное состояние есть состояние, характеризующееся весьма развитой поверхностью раздела двух (или более фаз). Наиболее типичный случай - когда одна фаза состоит из дисперсных частиц малого размера, взвешенных в дисперсионной среде (или фазе). [c.6]

    В заключение этой главы следует сделать несколько замечаний относительно определения формы и размеров частиц высоко дисперсных материалов. Необходимо помнить, что точность этих определений обусловлена разрешением, получаемым для данного объекта. Если частица представляет собой правильный многоугольник с п сторонами, то на микрофотографии этот многоугольник будет различаться в том случае, если (приближенно) й> пЬ, где — диаметр частицы, определяемый как диаметр круга с площадью, равной площади частицы, а 8 — разрешение (подробнее об этом см., например, (94)). В случае невыполнения этого условия контур частицы будет представляться в виде круга. Впрочем, на практике во многих случаях форма частиц с достаточной степенью приближенности может быть принята сферической. Это относится к частицам почти всех сортов сажи, многих дымов металлов и их окислов, ряда коллоидных растворов. Причина такого однообразия формы частиц веществ совершенно различного химического состава заключается в идентичности условий их образования. Действительно, все эти системы получаются в результате процесса конденсации на зародышах молекулярно или атомарно диспергированного вещества в газообразной или жидкой фазе. Так как все направления роста частиц можно считать равновероятными, то форма частиц при отсутствии кристаллизации должна быть шарообразной. Если в таких первичных частицах протекают процессы кристаллизации, то они могут принимать ограненную форму (например, при графитировании саж) или распадаться на более мелкие кристаллические частицы (например, в 1 оллоидпых растворах, см. стр. 132). [c.159]

    Выполненные в свое время Поспеловой микроскопические определения дисперсности порошков карбида вольфрама при различном числе промеров показали, что получаемая кривая распределения непрерывно и быстро перемещает свой максимум в область мелких частиц с увеличением числа промеров. Более или менее удовлетворительные результаты, соответств щие данным седиментометрического анализа, получены лишь при числе промеров около 2000. Если к этому добавить трудности, связанные с точными измерениями мелких частиц, лежащих на границе наблюдаемости при данном увеличении, и отметить одновременно сильное влияние на результаты подсчетов факторов субъективного характера, то можно составить представление о реальной ценности микроскопического анализа как самостоятельного метода нахождения кривых распределения дисперсных систем. Поэтому микроскопический метод имеет значение лишь в качестве вспомогательно-поверочного метода дисперсионного анализа и может применяться, в частности, при определении максимальных размеров частиц, для суждения о наивероятнейшей дисперсности изучаемой системы и в других подобных случаях. [c.17]

    В первой части рассмотрены методы определения дисперсности криста.и-лических порошков, основывающиеся на использовании явления диффракционного расширения интерференционных максимумов. Эти методы условно будем называть старыми в противоположность методам, изложенным во второй части, которые будем называть новыми. Сравнивая возможности старых и новых методов, нельзя сказать, что старые методы потеряли свое значение с появлением новых. Каждый из них имеет свою область применения, свои преимущества и недостатки в том или ином конкретном случае. Прежде всего, старые методы важны при исследовании кристаллических систем, когда требуется иметь сведения об отдельных кристалликах, входящих, быть может, в состав поликристаллических агрегатов. Кроме того, в старых методах используются более простые технические средства, благодаря чему они допускают более быстрое и широкое изучение экспериментального материала. В то же время из изложенного видно, какие богатые возможности открываются для практических методов рентгеновского анализа дисперсности, использующих диффракционное рассеяние под малыми углами. Новые методы приложимы с одинаковым успехом для исследования обширного класса высокодиснерсных систем, вне зависимости от структуры их частиц. Кроме того, нри использовании новых методов рентгенографического анализа задача определения функции распределения частиц но размерам оказывается более доступной в экспериментальном и теоретическом отношениях, чем подобная же задача, основанная на использовании старых методов. Учет влияния всяких посторонних факторов в случае рассеяния рентгеновских лучей под малыми углами несравненно проще, чем при старых методах. [c.56]

    Жесткие лолИ Меры также имеют определенный преД ел диспергирования, зависящий от химической природы полимера, режима механического диспергирования, принципа действия аппаратуры, характера среды и т. д. Жесткие полимеры в воздушной среде, например при вибропомоле, измельчаются до частиц размером 1—3 МК, и потом степень дисперсности практически не меняется, по свойства продолжают изменяться, что определяется дальнейшими превращениями структуры по ходу механохимического процесса. Так, при вибродиспергировании акрилонитрильного волокна (нитрон) и охлаждении жидким азотом кривые распределения частиц продуктов диспергирования сдвигаются в сторону более высоких степеней дисперсности (рис. 143) с одновременным понижением полидисперсности. В предельном случае в результате измельчения могут получаться осколки макромолекул, соответствующие Мао, но в газовой среде они вновь слипаются, образуя агрегаты, величина которых определяется аутогезионными свойства.ми данного полимера, а в жидкостях-нерастворителях—стаиилизи-рующимися свойствами жидкости . [c.188]

    Определение диаметров частиц < 2 мкм путем измерений мутности при больших длинах волн затруднено (Голден и Фиппс, 0,3 1960). При более коротких волнах чувствительность измерений заметно увеличивается (рис. Н1.10), что особенно важно для исследования эмульсий с большим содержанием очень маленьких шариков. В большинстве нефе-лометрических определений требуется сравнительно узкая ширина спектра, так что дорогостоящий УФ спектрофотометр можно заменить простым фильтрующим прибором. Для этих целей приспособлен хилгеровский биохимический абсорбциометр (Голден и Фиппс, 1960). С его помощью, используя соответствующие фильтры или их комбинации, можно определить как средние размеры частиц, так и объем дисперсной фазы. Прибор необходимо откалибровать относительно данных, получаемых с помощью УФ спектрофотометра при соответствующих длинах волн. Промышленные абсорбциометры удобны тем, что уже откалиброваны. [c.150]

    Фазовые превращения в консистентных смазках. Консистентные смазки могут находиться в различных коллоидных состояниях— от гетерогенных дисперсий кристаллических мыл при более низких температурах до гомогенных изотропных расплавов при соответствующих высоких температурах. При промежуточных температурах мыльные консистентные смазки могут переходить в различные модификации, обусловленные изменением кристаллического состояния мыла и переходом его из твердокристаллических в жидкокристаллические формы. Однако коллоидное состояние загущенной мылом консистентной смазки, соответствующее определенному интервалу температур, зависит не только от полиморфных превращений мыл, но и от формы и размеров дисперсных частиц мыла, условий взаимодействия между частицами, степени растворимости данного мыла в данной жидкой среде, содержания воды в виде самостоятельной фазы, присутствия различных поверхностно-активных веществ. Последние могут к тому же непосредственно влиять на фазовое состояние диспергированных в смазках мыл, изменяя их кристаллическое строение и температуру фазовых переходов. Поэтому температуры фазовых переходов мыл, диспергированных в консистентных смазках, и переходы их дисперсий в новое коллоидное состояние не могут быть просто предсказаны на основании уже известных температур фазовых превращений сухих мыл, а свойства консистентных смазок в различных коллоидных состояниях не могут быть объяснены только особенностями кристаллического строения и свойствами мыл в соответствующих мезаморфных фазах. [c.56]

    Почвы — более сложные дисперсные системы, чем грунты, с которыми они генетически связаны. Наряду с минеральной частью, состоящей из частиц разной природы и различных размеров, весьма важную роль в них играют органические вещества и прежде всего гумус [474]. Однако природа твердой фазы, размер и форма ее частиц придают почвам такие физико-механические свойства, как способность их сопротивляться сдвигу и разрыву, а также сохранять водопрочную комковатую структуру [10]. Гумусовые вещества распределяются главным образом на поверхности раздела между минеральной частью и почвенным раствором и оказывают существенное влияние на влагоемкость почв, а также на протекание сложных физико-химических и биохимических процессов. Вместе с тем они, по-видимому, действуя аналогично ПАВ, определяют агрегативную устойчивость дисперсной системы [4]. Почвенные частицы образуют первичные агрегаты размером меньще 0,25 мм, представляющие собой ПКС локального типа, и вторичные агрегаты (размер 0,25—7 мм). Водопрочность агрегатов, т. е. способность их сохранять при погружении в воду прочность на сдвиг и разрыв, а также пористость и определенное соотнощение по размеру, являются важными критериями агрономической ценности почвенных структур [10, 406, 475]. [c.107]

    Определение дисперсности и величины частиц коллоидальных размеров может производиться в большинстве случаев в тех камерах, в которых проводится фазовый анализ, а оценка величины сравнительно крупных частиц (более 10 см) в камерах типа РКСО. [c.137]


Смотреть страницы где упоминается термин Определение дисперсности частиц размером более 2 мкм: [c.106]    [c.264]    [c.78]    [c.315]    [c.150]    [c.371]    [c.395]    [c.574]    [c.245]    [c.384]    [c.99]   
Смотреть главы в:

Экспресс методы определения загрязненности нефтепродуктов -> Определение дисперсности частиц размером более 2 мкм




ПОИСК





Смотрите так же термины и статьи:

Болов

Дисперсные частицы

Определение дисперсности частиц размером от 0,1 до 20 мкм

Частицы размер

Частицы размер см Размер частиц

Частицы размер, определение



© 2025 chem21.info Реклама на сайте