Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Импульсный метод ультразвуковой дефектоскопии

    ИМПУЛЬСНЫЙ МЕТОД УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ [c.83]

    ТЕНЕВОЙ МЕТОД ДЕФЕКТОСКОПИИ — метод дефектоскопии, основанный на ослаблении дефектами интенсивности упругих колебаний ультразвуковой частоты один из методов ультразвуковой дефектоскопии. Впервые применен (1928) сов. исследователем С. Я. Соколовым. Для осуществления контроля в исследуемое изделие с одной стороны вводят ультразвуковые колебания (импульсные, непрерывные с частотной модуляцией или без нее), используя различные излучатели (напр., облучающую головку). С другой стороны изделия с помощью датчика, установленного напротив излучателя, регистрируют интенсивность этих колебаний, прошедших через толщу материала. Если на пути колебаний окажется дефект, то часть их отразится, и интенсивность колебаний, поступающих на датчик, уменьшится. Для Т. м. д. используют дефектоскопы типа УЗД, ДУК и др. Т. м, д. применяют для обнаружения расслоений, инородных включений, раковин и др. дефектов в металлах, бетоне и т. д. [c.516]


    Ультразвуковой метод обнаружения скрытых дефектов основан на свойстве ультразвука проходить через металлические изделия и отражаться от границы раздела двух сред, в том числе и от дефекта. В зависимости от способа приема сигнала от дефекта различают два метода ультразвуковой дефектоскопии - метод просвечивания и импульсный метод. [c.97]

    Ультразвуковой импульсный метод контроля не дает возможности с полным основанием судить о характере дефекта. С помощью серийных ультразвуковых дефектоскопов можно лишь с достаточной для практики точностью определить координаты и условную площадь дефекта чтобы судить о характере дефекта, необходимо провести дополнительные исследования. [c.481]

    Как отмечалось во введении, эхометод— основной метод АК, поэтому он здесь рассмотрен наиболее полно. Контроль этим методом выполняют с помощью импульсного ультразвукового дефектоскопа. [c.92]

    Эхо-импульсный метод измерения толщины основан на регистрации времени прохождения ультразвукового импульса через изделие. Эхо-импульсный толщиномер работает так же, как и ультразвуковой дефектоскоп. Пьезоэлектрический преобразователь при воздействии электрического сигнала от импульсного генератора посылает в изделие импульс упругих колебаний, который распространяется со скоростью, зависящей от химического [c.50]

    Эхо-импульсный метод дефектоскопии заключается в посылке в изделие искателем ультразвуковых импульсов и приеме тем же или другим искателем сигналов, отраженных от дефектов и от противоположной поверхности изделия. Различают два способа контроля основной и реверберационный. [c.85]

    Наиболее совершенным и широко распространенным в дефектоскопии является эхо-метод, который поясняется блок-схемой импульсного ультразвукового дефектоскопа, работающего по принципу отражения ультразвуковых импульсов от дефектов в изделии (рис. 4.25). [c.282]

    Книга посвящена методам ультразвукового контроля, применяемым в промышленности, а также воздействию мощных ультразвуковых колебаний на различные технологические процессы. Большое внимание уделено импульсным ультразвуковым методам дефектоскопии и физико-химических исследований. [c.2]

    Измерение скоростей распространения продольных и поперечных ультразвуковых волн, а также поглощения ультразвука в твердых телах позволяет исследовать ряд вопросов, относящихся к физике твердого тепа. Из них наиболее ван<ными по своему использованию в технике являются метод определения упругих постоянных и метод измерения величины зерна в металлах. Хотя подобные методы исследования применимы, кроме металлов, и к ряду других материалов, однако большинство экспериментальных данных на сегодняшний день относится к исследованию металлов. Это в некоторой стенени объясняется тем, что аппаратура, предназначенная для измерения скорости и поглощения ультразвука, во многом аналогична импульсным ультразвуковым дефектоскопам, применяемым для исследования металлов. Поэтому первые опыты в этом направлении проводились с помощью упомянутых выше дефектоскопов. И лишь в дальнейшем, в связи с необходимостью повышения точности измерений и расширения диапазона частот, для этих целей были изготовлены специальные установки, позволившие существенно расширить круг вопросов, решаемых данным методом. [c.146]


    Ультразвуковой метод дефектоскопии использует ЗВ высокой частоты (20 кгц — 25 Мгц). Известны два основных метода ультразвукового контроля — теневой (метод сквозного прозвучивания) п эхо-метод (метод отражения) имеются варианты иммерсионного и контактного ультразвукового методов, отличающиеся способом ввода ЗВ в исследуемый материал. При этом методе используется аппаратура, блок-схема к-рой аналогична схеме импульсного прибора для ультразвуковых испытаний полимерных материалов (см. рис. 1). [c.31]

    При контроле детали ультразвуковым дефектоскопом, основанном на импульсном методе, к ее поверхности подводят излучатель ультразвуковых колебаний, который одновременно может быть приемником. Если дефекта в детали нет, то ультразвуковые колебания, возбуждаемые генератором, отразившись от противоположной стороны детали, возвращаются обратно и возбуждают электрический сигнал в приемнике. После усиления и развертки сигнала на экране электрон-но-лучевой трубки будут видны два всплеска от излученного и отраженного от противоположной стенки импульсов. Если в детали имеется дефект, то ультразвуковые колебания отражаются от дефекта и на экране появляется промежуточный всплеск. Этот метод обладает высокой чувствительностью и применяется при обнаружении внутренних дефектов в деталях большой толщины, а также в труднодоступных местах. [c.98]

    Ультразвуковой метод является основным для выявления внутренних пороков крупногабаритных изделий, отливок и дефектов в. прокате большого сечения. Широкое применение он находит при контроле сварных швов и в первую очередь швов больших толщин. Принцип действия этого метода основан на свойстве ультразвуковых волн малой длины распространяться в виде направленного луча, отражаться и преломляться на границе раздела двух сред. Ультразвуковые дефектоскопы подразделяются на импульсные с приемом отраженного сигнала и теневые с непрерывным излучением. [c.155]

    Импульсный ультразвуковой дефектоскоп типа ДУК-8 предназначен для обнаружения дефектов контактным и иммерсионным методами контроля в материалах с большим коэффициентом затухания. [c.206]

    На фиг. 4 приведена схема прозвучивания изделий импульсным методом, получившим наибольшее применение в ультразвуковой дефектоскопии металлов. [c.35]

    Повышение чувствительности ультразвуковой когерентно-импульсной фурье-ин-троскопии на основе метода нуль-вре-менного анализа комплексных огибающих синтезированных импульсных характеристик // Дефектоскопия. 1997. № 6. С. 3-9. [c.840]

    Физические методы контроля применяют с целью выявления в сварных соединениях возможных внутренних дефектов (трещин, непроваров, пор, шлаковых включений и др.). Ультразвуковой контроль осуществляют с помощью импульсных дефектоскопов УДМ-З, ДУК-66П и др. [c.148]

    Импульсный дефектоскоп благодаря наличию пауз свободен от большинства помех дефектоскопа с непрерывным излучением. Может быть задана большая мощность импульса без перегрузки кварца, интерференция практически отсутствует, дифракция и многократное отражение не сказываются на выявлении дефекта. Большим преимуществом метода являются значительная глубина проникновения (до 3,5 м), исследование с одной стороны детали и отсутствие погружения детали в жидкость. К недостаткам ультразвукового метода относятся необходимость чисто обработанной поверхности размерами не менее 30 X 60 мм, неудобство контроля деталей сложной формы и наличие неконтролируемых ( мертвых ) зон, простирающихся на глубину 10 мм от передней грани детали и на 5 % [c.378]

    Общеизвестно применение ультразвуковой дефектоскопии для контроля внутренних пороков, дефектов в металлоизделиях. Большая проникающая способность ультразвуковых колебаний ставит ее на одно из первых мест среди прочих разнообразных физических методов дефектоскопии без разрушения испытуемых изделий. Область применения импульсной ультразвуковой дефектоскопии металлов весьма многообразна детали турбин и двигателей внутреннего сгорания, детали автомобилей, паровозов и самолетов, рельсы, поковки, листовые материалы, трубопроводы, крепежные шпильки, закленочныо соединения котлов и самая разнообразная продукция прокатных, кузнечных и прессовых цехов. Кроме импульсных методов ультразвуковой дефектоскопии, существует несколько различных по своей физической природе методов дефектоскопии с помощью незатухающих колебаний. К ним следует отнести проверку резонансным методом толщин изделий, доступ к которым возможен с одной стороны. С подобного вида измерениями мы встречаемся при проверке зон коррозионного разъедания стенок котлов, трубопроводов и общивки судов. Незатз хающие [c.7]

    Использование незатухающих (непрерывных) колебаний в ультразвуковой дефектосконии известно с 1928 г. [56]. Существует несколько различных по своей физической природе методов ультразвуковой дефектоскопии с помощью незатухающих колебаний. Эти методы до сих пор используются для целей обнаружения внутренних дефектов в различных материалах наряду с рассмотренными выше импульсными методами, так как в ряде случаев они имеют некоторые преимущества перед ними и позволяют, тем самым, расширить возможности ультразвуковой дефектоскопии. [c.125]


    При контроле крз пногабаритиых прессованных и катаных полуфабрикатов (профилей, плит и других деталей) рядом ценных преимуществ по сравнению с обычным методом импульсной ультразвуковой дефектоскопии обладает так называемый иммерсиопньпг метод [94, 95, 96]. В этом случае контролируемое изделие полностью погружается в воду, что значительно улучшает акустический контакт пьезопреобразователей (щ шов) с поверхностью изделия. Кроме того, контролю могут быть подвергнуты изделия с грубо обработанной поверхностью. Улучшение акустического контакта позволяет использовать в данном случае высокие частоты ультразвуковых колебаний (20ч--25 Мц), что приводит к повышению чувствительности метода. Следует также отметить, что при иммерсионном методе дефектоскопии наиболее эффективно ос ществляется автоматизация контроля. [c.123]

    В настоящее время существует несколько типов приборов, позволяющих производить испытания качества бетона в толще до 20-> 30 м. Испытания обычно производятся импульсным методом. В качестве пьезопреобразователей используются щуиы с пакетами пз сегнетовой соли, имеющие значительно большую чувствительность, чем обычно применяемые в ультразвуковой дефектоскопии металлов щупы с пластинками кварца или титаната бария. Кроме того, ввиду неровной поверхности изделий из бетона, применяют специальные нхуиы с топким резиновым донышком (см. рис. 65). [c.134]

    Метод неразрушающей дефектоскопии сварных соединений выбирают исходя из возможности обеспечения наиболее полного и точного выявления дефектов. При этом применяют следующие основные методы ультразвуковой контроль с помощью импульсных дефектоскопов УДМ-3, ДУК-66П и др. рентгенонросвечивание с помощью аппаратов РУ-12-5-1, РИПА-1Д, РИНА-2Д, РАП-160-ЮН и др., гаммагрифирование с помощью дефектоскопов Гаммарид-13, Гаммарид-15, Гаммарид-2, Гамма-рид-23, РИД-21М и др. цветную дефектоскопию. [c.128]

    Ультразвуковыми волнами называют упругие механические колебания (звуки), имеющие частоту более 20 кГц. Этот вид дефектоскопии применяют для обнаружения подповерхностных и глубоко залегающих пороков деталей независимо от материала, из которого они изготовлены. Ультразвуковая дефектоскопия используется как для контроля отдельных деталей, так и деталей, находящихся в сборке например, можно выявить дефекты подступичной части оси колесной пары, шеек коленчатого вала, не снятого с дизеля, в болтах крепления полюсов электрических машин, в зубьях шестерен тяговых редукторов, находящихся под тепловозом, и т. д. В локомотивных депо и на ремонтных заводах распространен дефектоскоп УЗД-64, работающий по эхо-импульсному методу (рис. 9). Генератор импуль- [c.32]

    К физическим методам контроля, выявляющим внутренние дефекты сварных соединений (трещины, непровары, поры, шлаковые включения и др.), относятся ультразвуковая дефектоскопия, радиографическая дефектоскопия (рентгено- и гаммаграфирование). Ультразвуковую дефектоскопию вьшолняют с помощью импульсных дефектоскопов УДМ-3, ДУК-66П и др. Для рентгенографиро- [c.123]

    Следует отметить, что ультразвуковой метод импульсной дефектоскопии применяется не только для исследования металлов, но и таких материалов, как фарфор, стекло, пластмассы и др. Нан1)имер, в фарфоровых изоляторах с помощью ультразвука определяются внутренние дефекты [971, качество склейки и пористость [98]. [c.124]

    Измерения поглощения в большинстве металлов и сплавов проводятся импульсным ультразвуковым методом. При этом наблюдается затухание импульсов, многократно отраженных от граней испытуемого образца. Сопоставление данных ультразвукового метода с металлографическими данными о размерах зерен металла позволяет уточнить характер зависимости поглощения звука от структуры металла. Блок-схема ультразвуковой установки для контроля структуры металлов аналогична схемам импл льсных дефектоскопов, т. е. состоит из синхронизирующего генератора, генератора высокой частоты, усилителя [c.148]

    При использовании ультразвукового метода для возбуждения продольных и поперечных колебаний в испытуемых образцах применяются соответственно кристаллы X- и Г-срезов. Продольные волны вводятся в образцы через промежуточный слой смазки, например слой трансформаторного масла. Для ввода поперечных волн необходим слой смазки, обладающий упругостью сдвига. В этом случае применяется минеральный воск, полиизобутилен и др. Ультразвуковые волны, прошедшие через испытуемый образец, принимаются приемным кристаллом и через усилитель подаются на экран электронно-лучевой трубки. Интервалы времени между двумя последовательно отраженными импульсами и будут характеризовать величину скорости распространения звука. При использовании для этих целей ультразвукового импульсного дефектоскопа точность измерений величины скорости распространения звука составляет1 — 3%. Следовательно, с такой же (или несколько меньшей) точностью могут быть измерены и упругие постоянные материалов. Однако следует отметить, что это относится к материалам с малой величиной рассеяния звука при постоянной температуре во всей толще испытуемого изделия. В противном случае скорость распространения звука будет различной для разных участков испытуемого образца и интерпретация результатов измерений будет затруднительной. Это, естественно, скажется на точности данного метода. Несмотря на это, ультразвуковой метод измерения упругих постоянных твердых тел является вполне надежным, и с помощью его уже получено много полезных результатов. Так, он с успехом нашел применение для измерения модулей упругости высоковольтных изоляторов, для которых требуется повышенная механическая прочность [97]. Простота и высокая точность измерений, характеризующие импульсный ультразвуковой метод, обусловливают широкое применение этого метода для измерения упругих постоянных каучуков [20], пластмасс, стекла [130], фарфора [131], бетона [109], льда [132] и металлов. [c.155]

    Сплошность сцепления. На заводах-изготовителях для контроля качества гомогенной освинцовки используют переносные и стационарные рентгеновские установки. Контроль осуществляют как на стадии нанесения гомогенной освинцовки на поверхность стального листа, так и покрытия аппарата. Контроль проводят выборочно (отдельных участков) или всей поверхности. В условиях монтажной площадки для контроля сплощности сцепления щироко используют ультразвуковой метод. Его часто применяют также для определения толщины покрытия. Испытания проводят как импульсными, так и резонансными дефектоскопами. Сигналы фиксируются ло шкале прибора или на слух с использованием наушников. При хорошем сцеплении не происходит отражения сигналов от поверхности раздела сталь — свинец. Наличие сильных сигналов показывает на полное отсутствие связи обычно это имеет место, если площадь отслоения превышает размер головки прибора. При меньших размерах дефектов поступают слабые сигналы. Контур отслоения покрытия легко выявляется с помощью прибора. Испытания проводят с наружной стороны корпуса. Поверхность должна быть чистой от сварочных брызг, окалины, глубоких пор, трещин и других дефектов. Для обеспечения акустического контакта между искательной головкой и металлом его поверхность тщательно протирают ветошью и на нее наносят слой масла или вазелина. [c.279]

    В центральной лаборатории треста Южгазстрой объединения Росгазспецстрой были проведены экспериментальные работы по применению ультразвукового метода контроля сварных швов при строительстве газопроводов различных диаметров и толщины стенки. Результаты контроля были сопоставлены с данными магнитографического, рентгенографического, гамма-графического контроля и механических испытаний. При проведении экспериментальных работ использовались импульсный дефектоскоп УДМ-1М, магнитографический дефектоскоп МГК-1, рентгеновский аппарат ИРА-1Д, гамма-графический аппарат ГУП-Цезий. [c.128]

    Физические методы контроля (рентгено- и гаммаграфирование) производят, чтобы выявить в сварных соединениях возможные внутренние дефекты (трещины, непровары, поры, шлаковые включения и др.). Ультразвуковой контроль вьшолняют с помощью импульсных дефектоскопов УДМ-1М, УЗД-7Н, УЗД-НИИМ-5, УЗД-НИИМ-3 и др. [c.137]


Смотреть страницы где упоминается термин Импульсный метод ультразвуковой дефектоскопии: [c.119]    [c.496]    [c.496]    [c.496]   
Смотреть главы в:

Ультразвук и его применение в промышленности -> Импульсный метод ультразвуковой дефектоскопии




ПОИСК







© 2022 chem21.info Реклама на сайте