Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие области применения и другие методики

    Промышленная ГХ применяется в нефтяной промышленности чаще, чем в любой другой области. В качестве примеров применения ГХ в нефтяной и родственных отраслях промышленности можно привести определение температур кипения алифатических и ароматических углеводородов, октанового числа, а также калорийности природного газа [16.4-4-16.4-6]. Другими областями прит менения являются использование промышленной ГХ при анализе окружающей среды для контроля за атмосферой и водой [16.4-7, 16.4-8]. Примерами использования промышленной ГХ в мониторинге окружающей среды, о которых в последнее время сообщалось, является определение выбросов в атмосферу ароматических углеводородов, диоксида серы, сероводорода и образующегося при горении угля сероуглерода [16.4-9]. Развитие методик, основанных на переключении колонок, внедрении криогенных ловушек, распылительной экстракции или мембранных сепараторов, обеспечило широкую применимость ГХ в химической промышленности [16.4-10, 16.4-11]. [c.655]


    Коэффициенты активности определяют главным образом по данным измерений фазового равновесия, обычно равновесия между паром и жидкостью или жидкостью и жидкостью. Методики таких определений описаны ниже в данной главе, здесь же мы кратко обсудим ряд других методик, имеющих ограниченные области применения, к которым прибегают лишь в особых случаях, например при рассмотрении растворов нелетучих веществ. В этих методиках используются результаты измерения 1) осмотического давления, 2) понижения точки замерзания, 3) повышения точки кипения, 4) по- [c.176]

    ДРУГИЕ ОБЛАСТИ ПРИМЕНЕНИЯ И ДРУГИЕ МЕТОДИКИ [c.216]

    Имеются различные способы получения ИК-спектров твердых тел, и каждый из них обладает своими специфическими трудностями. При исследовании монокристалла главная трудность состоит в приготовлении достаточно тонких образцов с известной ориентацией. Если кристалл получают быстрым замораживанием жидкости или газа, образец должен быть отожжен . Во время отжига обычно происходят существенные изменения в спектрах, в частности в области Vg, что было обнаружено для гидроксиламина 11504], азотистоводородной кислоты [548] и азида аммония [549]. Порошок можно исследовать в виде взвеси, однако поглощение групп СН нуйола, часто применяемого для этой цели, закрывает часть области v .. Использование прессованных таблеток устраняет эту трудность, но приводит к еще более неприятным осложнениям. Фармер [631 ] обнаружил, что спектры шести карбоновых кислот, восьми фенолов и двух спиртов, запрессованных в таблетки из КС1, могут радикально меняться с изменением методики размола. В его работе в качестве примера приведены спектры бензойной кислоты (в области 650—1600 лi ), размельченной и запрессованной один раз в КВг, а другой раз с применением другой методики размола и прокаливания — в КС1. Спектры отличаются настолько, что можно подумать, что они принадлежат разным веществам. Сейчас еще нельзя сказать, насколько общим окажется это явление для веществ с Н-связью [630].  [c.70]

    Санитарно-химические исследования в настоящее время входят в систему испытаний готовой продукции, предназначенной для использования в пищевой промышленности, водоснабжении, быту, медицине и других областях применения. Опыт работы по гигиенической оценке вновь создаваемых полимерных материалов показал, что подобные исследования особенно успешно можно проводить в лабораториях отраслевых институтов. Разработанные в этих лабораториях методы исследования гигиенических свойств синтетических материалов и методики анализа химических компонентов в различных средах позволяют заводским лабораториям накапливать материалы по санитарно-химическому контролю за выпускаемой продукцией. Эти материалы помогут химикам-технологам создавать более качественные полимеры. [c.9]


    Явление ионного обмена было открыто более ста лет назад, но интерес к нему не ослабевал, а наоборот возрастал. Большое значение ионный обмен имеет в агрохимии, в процессах жизнедеятельности, в химическом анализе и других областях. Применение ионного обмена в химическом анализе заключалось в концентрировании следов определяемых компонентов, удалении ме-, шающих ионов, в разделении близких по свойствам ионов. В 1935 г. Адамс и Холмс [6] разработали методику синтеза высокомолекулярных органических сорбентов — ионообменных смол, значение которых для развития ионного обмена трудно переоценить. [c.6]

    Подчеркнем, что рис. 8.1 является универсальным, так как изменение экономического показателя f n, связанное с изменением цен на металл или применением другого типа нагнетателей, а также специфика используемой теплообменной поверхности учитываются величиной Mi. Приведенная методика справедлива для любой схемы обтекания и той области изменения Re , где возможны степенные зависимости a (Rei), (Re ) типа (2.2), (2.3). [c.122]

    Деление Электродов по агрегатному состоянию на жидкие и твердые, хотя и кажется на первый взгляд примитивным, в действительности отражает глубокие специфические, отличия ъ методике работы, характере изучаемых закономерностей и областях применения. Среди жидких электродов как в фундаментальной электрохимии, так и на практике наибольшее распространение получил ртутный электрод. Одной из причин широкого использования ртутного электрода при электрохимических исследованиях служит легкость очистки ртути и возможность изготовления капающего электрода с возобновляемой поверхностью. На капельном электроде с небольшим периодом жизни капли примеси, всегда присутствующие в том или ином количестве даже после тщательной очистки раствора, не успевают накапливаться и не искажают результаты измерений, тогда как при работе на стационарных электродах достижение необходимой степени очистки растворов часто оказывается чрезвычайно сложной задачей. Примерами других жидких электродов служат жидкий галлий (т, пл. галлия 29,8 °С), растворы металлов в [c.15]

    Здесь q" и т определены выражениями, (3.10.42) и (3.10.43). Но уточненные оценки справедливы только в области, где е < 0(1), т. е. при х> 0(L). В области вблизи передней кромки эти выражения неприменимы. На это указывает тот факт, что некоторые из членов высших порядков неинтегрируемы при х = 0. Другая методика, в которой удается избежать этого затруднения, заключается в получении полной теплоотдачи и сопротивления из рассмотрения общих величин (пограничный слой плюс окружающая среда) энергии и количества движения. Такой метод применен для вынужденных течений в работе [43] и для течений, вызванных выталкивающей силой, — в работе [67]. [c.137]

    Предлагаемый Справочник может служить прекрасным пособием, отвечающим самым строгим требованиям к подобным изданиям. Большая заслуга авторов состоит в логичной, хотя и не совсем традиционной для справочника систематизации материала она сделана с учетом прежде всего биохимических функций, что позволяет быстро находить описание соединений самых различных классов в интересующей читателя области. Не меньшее удовлетворение у читателя должен вызвать и тот факт, что авторы не просто ограничились перечислением многих соединений с описанием их химических и физико-химических свойств, но и в подавляющем большинстве случаев дали указания на оригинальные работы, где описаны биохимические свойства, методы выделения или синтеза кроме того, по возможности приводятся способы применения в медицине, фармакологии, агрохимии и других областях. Особую ценность представляют уникальные в справочной литературе разделы по субстратам ферментов, ингибиторам биохимических процессов, биохимическим реагентам. В книгу вошли также очень важные для экспериментаторов разделы, касающиеся описания конкретных аналитических методик, методов приготовления растворов различных реагентов, буферных систем, физиологических сред при этом многочисленные таблицы в этих разделах чрезвычайно облегчают практические лабораторные расчеты. Хотя справочник и не претендует на исчерпывающее представление всех сведений о химических соединениях, материалах и методах, вовлеченных в орбиту биохимических исследований, тем не менее он охватывает подавляющее большинство важнейших и наиболее часто используемых из них. Этой книгой можно пользоваться и как методическим руководством, и как учебным пособием для биохимических практикумов и наконец, как сборником ценных лабораторных прописей для повседневной работы. [c.6]

    Совокупность перечисленных предпосылок показывает, что область применения предлагаемой методологии остается очень широкой. Основная идея предельного упрощения расчетов базируется на излагаемой ниже методике представления групп водохранилищ и водозаборов в виде эквивалентного изолированного водохранилища. Суть методики состоит в том, что некоторая группа водохранилищ и створов, где вода забирается потребителями из живого тока реки, вместе с привязанными к ним водопользователями укрупненным образом рассматривается как некоторая замкнутая система, не интересуясь внутренними процессами в ней. При этом также агрегируется суммарная боковая приточность и суммарные потери во всех водохранилищах группы. Такая процедура допустима, если правила функционирования получающегося гипотетического водохранилища-эквивалента не противоречат правилам, принятым в отдельных створах, а также не нарушают водно-балансовых соотношений и других физически очевидных условий функционирования агрегированного водохозяйственного комплекса. В результате эти группы действительно функционируют наподобие целостного водохранилища, поскольку холостые сбросы из единственного замыкающего створа возникают тогда и только тогда, когда наполнены все водохранилища в составе группы. Более того, выясняется, что на функционирование подобных групп не оказывают влияния процессы стока и водопользования на вышележащих участках речной сети, т. е. эти группы функционируют независимо от остальной части системы. [c.127]


    Мы попытались применить к этой системе тот же метод исследования, что и для системы гексаметиленимин — вода. Однако, несмотря на применение весьма эффективной системы насыщения и малой скорости пропускания газа, мы не могли добиться установления фазового равновесия. По-видимому, при невысоких температурах и крайне замедленной диффузии компонентов раствора в критической области равновесия при динамическом методе достичь очень трудно. Поэтому для исследования системы триэтиламин — вода была разработана другая методика. [c.65]

    Химический анализ — это фактически измерение. Он исключительно много дает другим областям знания. Особенно важную роль химический анализ играет в тех случаях, когда он так или иначе связан с нашей повседневной жизнью. Действительно, наша жизнь не протекала бы так спокойно, если бы не бдительный контроль химического анализа, о чем мы, как правило, и не задумываемся. Достаточно вспомнить хотя бы о пищевой, кондитерской, пивоваренной и фармацевтической промышленности. Без надлежащего контроля за качеством продукции этих отраслей промышленности, осуществляемого при помощи химического анализа, наше существование было бы делом случая. Когда мы заболеваем, установить причину болезни помогают многочисленные биохимические анализы. Установить причину внезапной смерти часто удается также благодаря тщательному исследованию в патологической лаборатории. Большинство же стандартных методик, используемых в этих случаях, основано на методах, разработанных в химических лабораториях либо непосредственно в этих целях, либо в ходе других исследований. Многие отрасли промышленности существуют только благодаря тому, что выпускаемая ими продукция соответствует заранее заданным стандартам сталь имеет заданный состав пластмассы обладают определенным набором свойств лекарственные средства безопасны в употреблении и не вызывают побочных эффектов. В каждой из перечисленных и в большинстве других обрабатывающих отраслей промышленности обычно осуществляется огромное число анализов, призванных контролировать надлежащее качество и безопасность производимых товаров. Далее мы более подробно обсудим некоторые конкретные примеры применения химического анализа. [c.13]

    Так как рабочие характеристики экстракционно-хроматографических колонок должны быть постоянны, что чрезвычайно важно для практического их применения, исследования в этой области следует продолжить, привлекая другие типы носителей и другие методики заполнения колонок. [c.80]

    Мы ограничили рассмотрение областью гомогенных реакций в растворах. Однако это не означает, что разработанные здесь методики нельзя применить к другим областям, которые в книге опущены, в частности к цепным реакциям. Настоящая книга должна послужить руководством для исследователей, занимающихся установлением схем и механизмов органических, неорганических, а также биохимических реакций. В последнем случае описание реакций простых типов можно непосредственно применить к металлокомплексному катализу, включая кинетику ферментативных процессов. Это, например, может помочь биохимику понять основы кинетической теории биохимических реакций. Поскольку книга предназначена для химиков разных специальностей, при ее написании предпочтение отдавалось наиболее общим представлениям, а подробные примеры не включались. Надо надеяться, что читатель сможет понять свою специфическую кинетическую проблему и решить ее, прочитав данную книгу. Для этого не требуется никаких особых знаний химической кинетики или расчетных методов сверх курса высшей школы. Поистине удивительно, как применение нескольких простых математических выкладок помогает интерпретировать имеющие физический смысл кинетические данные. [c.9]

    Поскольку метод ЯМР дает информацию о ядрах, обладающих магнитным моментом, то потенциально этот метод может быть использован для решения целого ряда химических проблем. Однако в области химии природных соединений его применение ограничивается почти исключительно спектрами иротонов, так как атомы С и 0 не обладают магнитными моментами. В этой главе речь идет главным образом о применении протонного магнитного резонанса. Изотопы и 0 обладают магнитными моментами, однако их магнитный резонанс происходит в другой области спектра. В спектре протонного резонанса имеются и эффекты второго порядка, связанные с — Н-взаимодействиями, но для их наблюдения требуются довольно специфические методики. Эти эффекты использовались для получения весьма ценной информации [3, 107, 142] и будут подробно рассмотрены ниже. [c.204]

    При разработке программы оптимизации теплообменника следует сохранять постоянным по возможности минимальное число параметров, ибо необходимость выполнения слишком многих условий может сделать решение неосуществимым. Любой метод в значительной степени зависит от конкретных требований, диктуемых данными условиями применения, и, следовательно, нельзя предложить какой-то общей методики. Конкретный расчет приведен в гл. 12 на примере паровых котлов, где изложена методика получения детального решения, позволяющего определить необходимую длину труб. Хотя оптимальное решение можно найти вручную, обычно удобнее пользоваться вычислительной машиной. Существует множество программ для выполнения подобных расчетов, но необходимо помнить, что оптимальная совокупность характеристик для одной области применения редко является оптимальной для другой. [c.166]

    Неизбежным следствием низкой удельной активности исследуемых объектов является необходимость предварительного концентрирования определяемого или тем более извлекаемого радиоактивного вещества. Для этой цели привлекаются все известные приемы и нередко в радиохимии внешней среды разрабатываются новые специфические методики, Б дальнейшем используемые и в других областях радиохимии. Для правильного выбора схемы химической процедуры большое значение имеет предварительный логический анализ. Применение этого приема к задаче определения концентрации в объектах внешней среды показало, что в зависимости от возраста радиоактивных продуктов, загрязняю- [c.527]

    В других случаях исследуемый параметр и методика его определения (например, измерение скорости реакции по поляризующему току) в принципе допускают использование первого метода, т. е. снятие всей кривой на одном электроде, однако приходится все же идти на применение второго или третьего методов. Это вызвано вероятностью влияния изменений поверхности ИЭ в одной области потенциалов на результаты измерений в другой области потенциалов (за счет необратимой адсорбции, растравливания поверхности, селективного растворения одного из компонентов сплава и т. п.). Так, по данным В. М. Княжевой, при работе с электродами из нержавеющей стали в горячих растворах серной кислоты крайне нежелательно снимать всю кривую ст = [((р) на одном электроде, повышая ср от потенциала коррозии, который обычно устанавливается вблизи максимума тока этой кривой. Вблизи фкорр и на падающем участке кривой (GH, рис. V. 1) электроды сильно растравливаются, подвергаются межкристаллитной коррозии, на них могут накапливаться нерастворимые карбиды, а в растворе — ионы Fe , которые, окисляясь до Fe + при достаточно положительных потенциалах в пассивной области, увеличивают измеряемый анодный ток. Поэтому целесообразно сразу устанавливать потенциал электродов вблизи точки ф (рис. V. 1) и снимать на одном образце кривую при понилсении ф, чтобы пройти падающий участок и активную область, а на другом образце [c.144]

    Как и в большинстве других областей применения спектральных методов, в аналитической химии проводится большая исследовательская работа по привлечению компьютеров для решения таких задач, как а) преобразование спектров в более компактную форму для последующего их хранения в компьЮ терных системах, б) разработка методов поиска, в) создание стандартных каталогов эталонных спектров в виде, пригодном для ввода в компьютер, и г) разработка компьютерных методов обращения с большими массивами данных. Наиболее важной представляется разработка методов быстрого поиска, уменьшение требований к объему памяти и возможность легкого распространения каталогов эталонных спектров среди заинтересованных лабораторий. В работах [80, 81] обсуждается использование масс-спектрометрических данных, представленных в двоичном коде, в файловых поисковых системах, предназначенных для идентификации спектров. Основное достоинство этого подхода — значительная экономия памяти и уменьшение времени поиска. Методы поиска в масс-спектрометрии можно разделить на две большие группы методы прямого и обратного поиска. В первом случае обрабатываемый объект сравнивается с элементами каталога, а во втором, наоборот, элементы каталога сравниваются с объектом, который необходимо опознать. Разработаны различные методы сравнения масс-спектра неизвестного соединения с эталонными данными каталога. В статье [82] предложен следующий подход обрабатываемый масс-спектр разбивается на интервалы длиной 14 а.е. м, в каждом из которых выделяется по два самых интенсивных пика, и преобразованный спектр сопоставляется эталонными спектрами, находящимися в каталоге (также предварительно подвергнутыми такой же процедуре сжатия). Существуют и другие методики сжатия спектров, учитывающие шесть, восемь или десять наиболее интенсивных пиков [83]. Во всех этих процедурах сравнение спектров проводится в режиме прямого поиска. В литературе [84—86] описана система, называемая Probability Mat hed Sear h, которая отличается от других систем поиска в двух отношениях. Первое отличие состоит в том, что сжатие спектра проводится с помощью процедуры, которая приписывает фрагментам, характеризующим структуру молекулы, еще и определенное значение параметра уникальности, причем чем чаще такой фрагмент встречается в эталонных спектрах, тем меньше значение этого параметра. Поиск по каталогу ведется с учетом всего десяти пиков спект- [c.121]

    Другая область применения вакуумно-экстракционной масс-спектрометрии— анализ продуктов обезгаживания пластиков и других органических материалов. Простое обезгаживание образцов в эвакуированной стеклянной или кварцевой трубке при непрерывно возрастающей температуре с анализом выделяющихся газов может дать интересную информацию о их составе и примесях. Бартон и Говье (1965) приводят данные относительно ряда эластомеров и пластиков, представляющих промышленный интерес. Определение гелия, аргона и других редких газов в метеоритах и геологических объектах методом вакуумно-экстракционной масс-спектрометрии хорошо разработано в течение многих лет. Методика эксперимента относительно лроста. Навеску в несколько десятых миллиграмма вводят в молибденовый тигель, который затем помещают в охлаждаемый водой стеклянный сосуд. При помощи высокочастотного нагрева температура поднимается до 1700°, и выделяющиеся газы анализируют на масс-спектрометре (после очистки титановым геттером). Газы идентифицируют, измеряют их количество и определяют изотопные отношения. Общепринятый способ описан Хейманом (1969). Данные по обезгаживанию обычно приводят в единицах Ю см /г (при нормальных условиях). Типичные [c.383]

    Хотя представления, положенные в основу этого обзора, несомненно, пригодны для изучения большого числа взаимодействий, их ни в коем случае нельзя считать подходящими абсолютно для всех систем. Например, ситуация, когда может происходить взаимодействие как А, так и его комплекса с лигандом и матрицей (/гдх и /гдзх — истинные константы), не рассматривалась в настоящем обзоре для этой ситуации предложена более сложная теория [19]. Однако, допуская, что единственная истинная константа ассоциации описывает все взаимодействия особого типа между растворенным веществом и матрицей, мы существенно ограничиваем область применения современных методик в количественной аффинной хроматографии с мультива-лентными растворенными веществами [18, 19]. Нетрудно представить себе, что последовательные взаимодействия растворенного вещества с матрицей могут характеризоваться увеличением или уменьшением констант связывания ввиду изменения стери-ческих факторов, связанных с расположением иммобилизованных групп X. Другой, уже обсуждавшийся аспект, ограничивающий применение настоящих методик, связан с допущением идентичности характеристик распределения в геле растворенного вещества и всех комплексов растворенное вещество — лиганд. Кроме того, совершенно не принимались во внимание кинетические соображения (химических процессов и массопередачи), касающиеся процесса распределения. В этом отношении более общая теория количественной аффинной хроматографии [34 показала, что ограничение значений констант скорости, вызванное предполагаемым достижением распределительного равновесия, вероятно, не имеет значения для исследований обычной колоночной хроматографии, но может сделать невозможным применение представленных выше выражений к результатам, полученным при высокоэффективной жидкостной хроматографии с использованием больших скоростей потока. Как отмечено в работе [35], возможное использование аффинной хроматографии для количественных исследований связывания лиганда, несом- [c.215]

    Первые эксперименты, в которых удалось наблюдать сигнал ядерного резонанса в конденсированных средах, были проведены в 1945 г. независимо Блохом и Парселлом [1.1, 1,2 ]. Следующим важным шагом было открытие химического сдвига - величины, которая характеризует электронное окружение рассматриваемого ядра. В металлах это явление (изменение резонансной частоты) впервые наблюдал Найт [1.3], а в жидкостях —Арнольд [1.4]. Это открытие оказало колоссальное влияние на развитие не только метода ядерного резонанса, но и других областей физики. Информация о частоте сигнала ЯМР дает возможность получить представление об электронном окружении ядра и о структуре химических соединений. На рис. 1.1 приведен спектр ЯМР на ядрах Н этанола [1.4 ], Этим спектром была открыта область исследований, известнаякак ЯМР высокого разрешения в жидкостях, К этой области относится подавляющее большинство всех экспериментов по ЯМР, проводимых в химии, биологии и медицине. Получение изображений с помощью ЯМР (ЯМР-томография) основано на этом явлении в жидкостях. Однако в данном случае химический сдвиг рассматривается как мешающий фактор, поэтому разрабатываются разнообразные методы, направленные на уменьшение различия в его значениях. Строго говоря, высокое разрешение может быть достигнуто лишь в жидкостях, но с помощью специальных экспериментальных методик может быть получена разнообразная полезная информация и для твердых тел. Недостатком этого метода является его низкая чувствительность. Этот недостаток частично был устранен введением Рихардом Эрнстом в 1966 г. [1,5 ] фурье-спектроскопии и появлением приборов со сверхпроводящим магнитом. Наибольшие успехи в применении метода ЯМР были достигнуты в исследованиях биологических макромолекул, что стало [c.12]

    Число исходных данных можно свести к минимуму, если предусмотреть в структуре расчет термических сопротивлений загрязнений, протечек, свойств теплоносителей, конструктивных величин путем аппроксимации стандартов (нормалей). Однако такое уменьшение исходных данных достигается обычно значительным усложнением алгоритмов, не всегда возможно и часто нецелесообразно вообще. Например, расчет свойств теплоносителей алгоритмически очень громоздок, методики расчета пригодны только для узких групп теплоносителей и их ввод в структуру проектных расчетов в несколько раз усложняет эти структуры и одновременно ограничивает область применения алгоритмов по охвату веществ. Поэтому в практике алгоритмизации обычно рассматривают расчет свойств теплоносителей как самостоятельную, внешнюю задачу, решение которой необходимо для расчета не только теплообменников, но и другого оборудования. Нужные для расчета теплообменников (и другого оборудования) [c.37]

    Недостаток метода - в наличии ошибки в результате разделения камеры на зоны, которая, тем не менее, может быть сколь угодно уменьшена с помощью увеличения числа зон и разумной эффективной температуры излучения зоны. Сложность метода ограничивает его применение специальными исследованиями тепловой работы печей и корректировкой других, более простых методов расчета. К то.му же трудности, возникающие при согласовании зонального подхода к лучистол1у переносу тепла с конечно-разностной методикой реще-ния уравнений газовой динамики, существенно ограничивают область применения зонатьных методов расчета. [c.131]

    Спектроскопия ЯМР высокого разрешения как наиболее информативный и мощный метод структурных и дагаамических исследований столь глубоко пронизывает все химические дисциплины, что без овладения ее основами нельзя рассчитывать на успех в работе в любой области химии. Поразительная особенность этого метода необычайно быстрое его развитие на протяжении всех последних 45 лет с момента открытия ЯМР в 1945 г. События последних 10 лет завершились полным обновлением методического арсенала и аппаратуры ЯМР. Основу приборного парка сейчас составляют спектрометры, оснащенные мощными сверхпроводящими соленоидальными магнитами, позволяющими создавать постоянные и очень однородные поля напряженностью до 14,1 Т. Каждый из таких приборов представляет собой сложный измерительно-вычислительный комплекс, содержащий помимо магнита и радиоэлектронных блоков одрш или дна компьютера, обладающие высоким быстродействием, большими объемами оперативной памяти и дисками огромной емкости. Импульсные методики возбуждения и регистрации сигналов с последующим быстрым фурье-преобразованием окончательно вытеснили режим непрерывной развертки, доминировавший в ЯМР до конца 70-х годов. Как правило, получаемая спектральная информащ1я перед ее отображением в виде стандартного спектра подвергается сложной математической обработке. На несколько порядков возросла чувствительность приборов. Методы двумерной спектроскопии и другие методики, реализующие сложные импульсные последовательности при возбуждении систем магнитных ядер, кардинально изменили весь методический арсенал исследователей и открыли перед ЯМР новые области применений. Эти новые и новейшие достижения уже нашли свое отражение в нескольких монографиях, появившихся за рубежом и в переводах на русский язык. Но они рассчитаны иа специалистов с хорошей физико-математической подготовкой. Между тем подавляющее большинство химиков-экспериментаторов ие обладают такой подготовкой. Более того, для практического приложения современного ЯМР вполне достаточно ясного понимания лишь основных физических пришдапов поведения ансамблей магнитных ядер при воздействии радиочастотных полей. Это понимание обеспечивает химику правильный выбор метода [c.5]

    Аналитик должен постоянно практиковаться в своей области, чтобы уметь выполнять как рутинные, так и уникальные анализы и развивать необ-хсдимые для этого методы и методики. Только постоянная практика учит студента искать компромисс между точностью анализа и затратами времени на его вьшолнение, консультироваться со специалистами из других областей с тем, чтобы найти оптимальный путь решения проблемы. Аналитическая химия не сводится к применению готовых методик к серии образцов. Химик-аналитик должен быть творческой и предприимчивой личностью, постоянно готовой применить весь арсенал своих теореткческлх знаний. [c.32]

    Одной из первых областей применения метода дистилляции является анализ зерновых материалов. Хоффман [143] установил, что результаты определения влажности хмеля, полученные азеотропной отгонкой с толуолом или скипидаром, согласуются с данными высушивания в вакуум-эксикаторе с пентоксидом фосфора и высушивания в воздушном сушильном шкафу при 80 °С. Методом дистилляции определяли также содержание воды в сливочном масле [129], в мелассе [284] и в различных других продуктах [287]. Браун и Дювель [61 ] описали методику определения влаж- [c.269]

    Однако практическое применение этих теоретических представлений еще не нашло широкого распространения при проектировании барботажных процессов, что объясняется, с одной стороны, отсутствием или недостатком сведений о таких парамет -рах гидродинамической модели, как величины продольного перемешивания фаз, механизма взаимодействия пузырей и их индивидуальных свойств и т.д., а с другой стороны, сложностью реакций, протекающих в барботажных реакторах. Поэтому вопросам математического моделирования барботажных реакторов, в частности, процессов жидксфазЕого окисления углеводородов, посвящено мало работ [9-12], а в имеющихся работах используется лишь отдельные элементы методики математического моделирования, не учитывается ряд кинетических и гидродинамических факторов, нет четкой классификации областей ведения процес -са, вычислительные трудности приводят к чрезмерному упрощению моделей реакции, что в некоторых случаях приводит к недостаточно корректному обоснованию рассмотрения только однофазной системы. [c.96]

    Следует полностью согласиться с мнением Уайкоффа о необходимости концентрировать усилия на развитии фундаментальных исследований, а не рассматривать их как предварительные или второстепенные по сравнению с прикладными. В последние годы в Англии Ментером и его последователями проводится серия работ по изучению кристаллических решеток ряда веществ. В меньшей стенени это относится к Японии, где, несмотря на ряд содержательных в научном и ценных в методическом отношениях работ, все же нет так ясно выкристаллизовавшихся принципиальных научных направлений. Весьма перспективными являются исследования кристаллических полимеров, проводимые в Англии и других странах. В СССР систематические исследования В. А. Каргина и сотрудников привели к созданию новых представлений о структуре аморфных полимеров. Есть все основания считать, что проводимое в настоящее время оснащение научно-исследовательских учреждений первоклассными приборами, освоение методики и возросший интерес к электронно-микросКопическим иссле дованиям приведут к быстрому качественному скачку этой области советской науки. На этой базе электронная микроскопия получит широкое применение при решении практических задач. [c.272]

    Численные значения по нашим данным немного занижены, что объясняется тем, что, с одной стороны, удельные объемы равные, с другой стороны — данные Михельса и Стриленда могут быть завышенными, как показывает анализ их методики, В области перехода вещества из двухфазной в однофазную данные Михельса и наши данные резко расходятся. В то время как по данным Михельса и Стриленда переход из гетерогенной в гомогенную фазу происходит в интервале 2,5—3°, по нашим данным этот переход происходит в интервале лишь 0,3° в критической изохоре. Причем примененная нами методика позволила произвести 2—3 измерения теплоемкости в этом интервале температур. Отметим, что подъем температур при наших измерениях теплоемкостей был очень мал. В критической области подъем температур составлял 0,12—0,13°. [c.10]

    Особый пример применения описанных выше методик в другой области связан с идентификацией компонентов, ответственных за стимуляцию роста спор Agari us Сатре8и 8 в питательной среде. Газы, полученные из этой культуры, осушали пятиокисью фосфора и пропускали через ловушку с жидким азотом. Было собрано достаточное количество стимулятора, что позволило осуществить масс-спектрометрический анализ, который показал, что вероятным стимулирующим веществом является 2,3-диметилпентен-1 [1369]. [c.193]

    Дополнительные методики. Имеется также несколько других интенсивно развивающихся областей применения спектроскопии ЯМР С в органической химии, интерес к которым возник сравнительно недавно. Показаны большие потенциальные возможности спектроскопии углерода для изучения химически индуцированной динамической поляризации ядер ХПЯ [22]. Начаты исследования спектров ЯМР С в нематической жидкокристаллической фазе [23]. В работе [24] сообщено о наблюдении отдельных сигналов ароматических и алифатических атомов углерода в твердых образцах антрацита и адамантана. В настоящее время развивается импульсная техника [25], позволяющая получать спектры С при полном подавлении спин-спинового взаимодействия с протонами и высокой чувствительности (с шириной линии 5—10 Гц) непосредственно в твердом теле. Этот метод (ядерная индукция в твердом теле с усилением за счет резонанса протонов) в принципе применим к любому ядру с низким гиромагнитным отношением и малым естественным содержанием в присутствии других ядер с большим гиромагнитным отношением, таких, как протоны. Резонансные сигналы метильных групп свободного и связанного диметилсульфоксида в водных растворах А1С1з в ДМСО показали, что спектры ЯМР 1 С могут стать очень важным методом изучения сольватных оболочек органических соединений [26.  [c.251]

    Адсорбция многих органических веществ в области ф<фо на металлах группы платины сопровождается деструкцией молекул, т. е. хемосорбция имеет диссоциативный характер. Для идентификации хемосорбарованных частиц ислользова ряд электрохимических методик, применение которых в области высоких потенциалов затруднено (см. [11]). Информация о строении адсорбата может быть получена и на основе анализа продуктов препаративного электросинтеза, так как стадия адсорбции органического акцептора является в ряде случаев необходимым условием протекания реакций присоединения электрохимически генерируемых радикалов Ri [1, 91. Этим способом изучено поведение диенов-1,3 плоть до 3 в [1, 60, 53]. Во (всех исследованных реакциях электрохимического радикального присоединения адсорбированная молекула диена включается в состав аддуктов в неизменном виде [1, 118, 122, 133—142]. Аналогичные результаты получены для этилена (см. [11]). Тщательный анализ продуктов электролиза не зафиксировал в заметных количествах соединений, образование которых можно трактовать как результат взаимодейсгоия Ri с осколками адсорбированных молекул. Таким образом, адсорбция на платине при высоких потенциалах носит ассоциативный характер, по крайней мере для той части адсорбата, которая вступает в реакции присоединения. Для других со-.единений природа хемосорбированных частиц не установлена. [c.288]

    Существует и более простой рентгеновский метод, который применяется в том случае, когда в лиганде содержится асимметрический атом с известной абсолютной конфигурацией. С помощью обычной методики находят относительные конфигурации всех источников асимметрии если в системе имеется центр с известной конфигурацией, установленной другим путем, то по этому центру можно определить абсолютную конфигурацию всего комплекса. Таким способом были исследованы [25, 26] комплексы, изображенные на рис. 2 и 3. Преимущество данного метода состоит в том, что для очень многих молекул органических веществ абсолютная конфигурация уже надежно установлена [ 18 [методами классической стереохимии в сочетании с абсолютным методом Бейвута, благодаря чему известно большое число молекул, которые можно применить в качестве стандартных систем с известной конфигурацией. Среди них многие важные лиганды, такие, как оксикислоты, 1,2-диамины, а-амино-кислоты и пептиды. Можно ожидать, что использование подобных веществ (с асимметрическим атомом углерода) в качестве внутреннего стандарта позволит значительно расширить область применения указанного метода. [c.154]

    Метод определения азота, предложенный Дюма, особенно в модификации Кирстена [342], имеет самое широкое применение. Однако этот метод непригоден для определения азота в водных растворах (например, в моче, крови и других физиологических жидкостях). В этих случаях более удобен метод Кьельдаля, отличающийся простотой аппаратуры и скоростью выполнения анализа. Особенна удобен этот метод при серийных определениях азота. Метод Кьельдаля в таком виде, в каком его впервые предложил автор, имел ограниченное, применение. Дополнения, введенные в методику на протяжении нескольких десятков лет, сделали ее одной из наиболее точных и простых в ися олнении, хотя область ее применеиия уже, чем область применения усовершенствованного метода Дюма. Метод неприменим без дополнительных операций для определения азота в нитросоединениях, некоторых гетероциклических соединениях и легколетучих веществах. [c.85]


Смотреть страницы где упоминается термин Другие области применения и другие методики: [c.15]    [c.10]    [c.639]    [c.172]    [c.117]    [c.6]    [c.7]    [c.381]    [c.204]    [c.199]    [c.56]   
Смотреть главы в:

Хроматографическое разделение энантиомеров -> Другие области применения и другие методики




ПОИСК





Смотрите так же термины и статьи:

Область применения



© 2022 chem21.info Реклама на сайте