Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Неточность результатов предыдущих исследовании

    Неточность результатов предыдущих исследований [c.317]

    Некоторые трудности и ограничения при исследованиях полимеров методами определения концевых групп ясны из предыдущего обсуждения. Низкая концентрация концевых групп даже в конденсационных полимерах сравнительно малого молекулярного веса требует применения микрохимических методов анализа. По этой же причине присутствие малых количеств примесей в растворителе или полимере может привести к ощутимым ошибкам при определении концевых групп необходимо заботиться о сведении таких ошибок к минимальной величине. Другим источником неточных результатов могут быть побочные реакции при полимеризации, в результате которых появляется некоторое количество нелинейных молекул или концевых групп, не являющихся функциональными это обусловливает неточность при расчете молекулярного веса. [c.282]


    В работах Сагдена с сотрудниками [3780, 3781, 3163] были предприняты попытки определить экспериментально величину Л(ОН) на основании измерения концентрации свободных электронов в пламенах, содержащих щелочные металлы и вычисления констант равновесия реакции 0Н ОН + е . Пейдж [3163], выполнивший большую часть этих измерений, обработал полученные им данные совместно с результатами предыдущих исследований [3780, 3781] и нашел для Л (ОН) значение — 65+1 ккал/моль. В результате анализа упомянутых выше косвенных определений величины Л(ОН) Пейдж показал, что ввиду неточности этих оценок они позволяют только сделать вывод, что величина Л(ОН) лежит в пределах от — 45 до —85 ккал/моль, причем значение — 65 ккал/моль наиболее вероятное. Следует, однако, отметить, что найденное в работах [3780, 3781, 3163] значение Л(ОН) существенно зависит от правильности определения механизма образования электронов в пламени, а также величины парциального давления гидроксила в пламени. [c.236]

    Анализ газов, образующихся в ударной трубе, может быть ошибочным вследствие весьма значительного разбавления водородом (рабочим газом), так что вычисленные константы скорости, возможно, неточны. Скорости в ударной трубе могут быть ниже вследствие добавки этилена к сырьевой смеси, поскольку, как было установлено другими упоминавшимися выше [54] исследованиями, проводившимися в ударной трубе, этилен подавляет разложение этана. Опыты в ударной трубе при максимальной температуре проводились, кроме того, с высокими степенями превращения, что могло замедлять реакцию вследствие торможения ее образующимися продуктами. Наконец, механизм реакции при значительно более высоких температурах может быть иным в связи с тем, что энергетически важное значение могут приобрести другие реакции обрыва цепи. На это указывает сравнительно хорошее совпадение с результатами опытов [25] по пиролизу этан при 1040 и 1370 °С. В противоположность результатам предыдущих опытов, проведенных в обычных реакторах при более низких температурах, в этих исследованиях [25] было обнаружено, что окись азота, по-види-мо1му, не тормозит разложения этана в области высоких температур. [c.318]

    В течение 1950—1960 гг. инфракрасный спектр NgO исследовался многими авторами. Подробный обзор результатов исследований, выполненных до 1955 г., дала Гренье-Бессон [1856], которая составила таблицу результатов измерений 66 полос N2O на основании как собственных работ с сотрудниками [534, 535, 634], так и работ других авторов (Г. Герцберга и Л. Герцберг [2029], Плайлера и Баркера [3275], Томпсона и Вильямса 3976], Дугласа и Мёллера [1377], Тейлора [3950]). Эти данные, полученные, как правило, с точностью 0,1—0,2 см на приборах с высоким разрешением, охватывают значительное число колебательных уровней с квантовыми числами 5, ug 6. 3 и U3 6. В число измеренных полос входят компоненты нескольких дублетов и триплетов резонанса Ферми. На основании такого большого экспериментального материала были вычислены значения нулевых частот, постоянных ангармоничности, а также постоянной резонанса Ферми [1856, 1857, 537, 1858]. Эти постоянные приняты в настоящем Справочнике и приведены в табл. 102. Постоянная резонанса Ферми определялась также Нильсеном с сотрудниками [2544, 3087, 3394] полученное ими значение к — 42,3 + 3 см W = 29,9 + 2 ш" ) согласуется со значением = 40 см W = 28,3 см ), рекомендованным Гренье-Бессон [1856] и принятым в табл. 102. Сравнение частот более 40 полос, вычисленных по принятым постоянным, с измеренными экспериментально показывает [1856], что невозмущенные колебательные уровни и большая часть возмущенных уровней NjO описываются этими постоянными с погрешностью, не превышающей 1 см Лишь для некоторых компонентов дублетов и триплетов резонанса Ферми расхождения между вычисленными и измеренными величинами превышают эту величину. Это может быть объяснено приближенным характером учета резонанса Ферми, а также возможной неточностью определения частот ряда полос. Например, расчет V() для полосы 11Ю приводит к значению 1880,04 которое существенно отличается от величины Vq = 1867,5 см найденной в старой работе Плайлера и Баркера [3275]. Однако позже Плайлер, Тидуэлл и Аллен [3286] при исследовании ряда полос NaO с высоким разрешением уточнили по сравнению с предыдущими работами значения Vq для некоторых полос. Для полосы ИЮ было найдено Vq — 1880,37 + 0,04 см что прекрасно согласуется со значением, вычисленным по принятым постоянным. Таким образом, принятые колебательные постоянные для молекулы NgO могут рассматриваться сейчас как наиболее надежные, хотя следует оговорить, что колебательные уровни N2O с большими значениями V,- описываются этими постоянными несколько хуже, чем для малых V/. Причина этого заключается [c.369]



Смотреть главы в:

Катализ. Некоторые вопросы теории и технологии органических реакций -> Неточность результатов предыдущих исследовании




ПОИСК





Смотрите так же термины и статьи:

Неточность



© 2022 chem21.info Реклама на сайте