Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая абсорбция

    В книге детально рассмотрены модели физической абсорбции, приведено математическое описание диффузии с химической реакцией, проанализированы конкретные примеры газо-жидкостных реакционных систем, включая промышленные процессы (абсорбция двуокиси углерода буферными растворами, растворами щелочей, аминов, химическая абсорбция сероводорода). [c.4]


    Таким образом, вне зависимости от вида кинетического уравнения при выполнении условия (1.18) коэффициент химической абсорбции равен коэффициенту физической абсорбции k . [c.26]

    Метод подхода к основам химической технологии через рассмотрение работы отдельных установок в настоящее время в основном не практикуется в связи с переходом к более обобщенному направлению, в котором теория явлений переноса рассматривается в общем виде. В пределах этого направления могут быть рассмотрены многие классические теории химической технологии. Долгое время явления массопереноса в условиях протекания химической реакции, которые имеют огромное значение в широком многообразии химических процессов, практически не использовались. В последние пятнадцать лет в литературе появились важные работы по общему представлению одновременных процессов массопереноса и химической реакции. Сюда можно отнести теоретические и экспериментальные работы в таких промышленно важных областях, как химическая абсорбция, гетерогенный катализ, продольное перемешивание в химических реакторах и др. [c.7]

    При написании этой книги автор пытался систематизировать имеющийся в рассматриваемой области материал и показать аналогии, существующие между, казалось бы, не связанными процессами, такими как, например, химическая абсорбция и гетерогенный катализ. Предпринята также попытка представить теоретические результаты в форме асимптотических решений, диапазон применимости которых определяется физической интуицией. Рассмотрение всех взаимно накладывающихся явлений, которые составляют процесс переноса массы в условиях протекания химической реакции, представляет настолько трудную задачу, что практически всегда необходимы упрощающие предположения. [c.7]

    В литературе представлен ряд гидродинамических моделей поверхности раздела жидкость — газ. Некоторые из них будут здесь обсуждены. Все гидродинамические модели основаны на предположении о нулевом градиенте скорости в жидкости. Однако необходимо напомнить, что условие нулевого градиента скорости у границы раздела системы газ — жидкость является не очень строгим применительно к теории химической абсорбции, хотя можно показать, что в большинстве случаев отношение скоростей массопереноса в жидкости при наличии или отсутствии химической реакции не зависит от частных гидродинамических условий в ней. [c.14]


    В дальнейшем предположим, что реакция необратима. Это допущение правдоподобно для большинства случаев. В этом отношении кажется уместной дискуссия об обратимости химических реакций, которые протекают при химической абсорбции. [c.58]

    В книге главным образом рассматривается химическая абсорбция, которая является основной областью, исследований автора в последнее время. Это не уменьшает общности формулировок, потому что процессы различной природы, как, например, гетерогенный катализ, могут обсуждаться и анализироваться на основе теории химической абсорбции. Однако все особенности также подробно обсуждены. [c.8]

    У — мгновенная скорость химической абсорбции, nlL- T-  [c.10]

    V — средняя скорость химической абсорбции, тЬ Т  [c.10]

    В данной книге главным образом рассматривается анализ систем газ — жидкость иными словами, явления химической абсорбции. [c.14]

    Следовательно, можно сделать вывод о том, что пленочная теория противоречит экспериментальным фактам. Тем не менее, при решении ряда теоретических проблем в области химической абсорбции встречаются такие математические затруднения, что само решение возможно только для наиболее простой модели, основанной на пленочной теории. Решение на основе пленочной теории можно считать в любом случае как приемлемое первое приближение. Особенно если рассматривается отношение коэффициента абсорбции в присутствии химической реакции, а именно к значению Если уравнение для этого отношения содержит только толщину пленки, то можно использовать уравнение (5) для выражения величины / как функции [c.16]

    Наконец, следует рассмотреть третье характеристическое время— время, действительно доступное для реакции. Последнее является, по-видимому, общим временем пребывания жидкой фазы пр в рассматриваемом абсорбере, так как химическая реакция происходит в жидкой фазе. По-видимому, если рассматривать процесс химической абсорбции в целом, то величина пр должна иметь, по крайней мере, тот же порядок, что и р. [c.21]

    Некоторые авторы предпочитают полагать Со = с в случае химической абсорбции. Это допущение несколько упрощает расчеты абсорберов. Однако при таком допущении величина в кинетическом режиме меньще. Чем к , что, конечно, нереально и обусловлено завышенной движущей силой в случаях, когда [c.43]

    И при определении коэффициента химической абсорбции кь [5]  [c.44]

    В режиме мгновенной реакции коэффициент химической абсорбции пропорционален коэффициенту физической абсорбций. Это значит, что химическая абсорбция в этом режиме зависит от гидродинамических условий таким же образом, как и про- [c.30]

    В разделах 2.3, 3.1 и 5.5 будет показано, что при различных режимах химической абсорбции наблюдается различное влияние пяти рассмотренных выше параметров на общую скорость абсорбции. Это значит, что можно легко идентифицировать отдельные режимы химической абсорбции, если экспериментально установить зависимость скорости абсорбции от этих пяти параметров [1]. [c.34]


    В главе 4 был описан режим быстрой реакции химической абсорбции и скорость реакции г рассмотрена как функция только концентрации растворенного газа. Это допущение во многих случаях не оправдано, поскольку концентрация жидкого реагента Ь также, по-видимому, влияет на скорость реакции  [c.67]

    Рассмотрим процесс химической абсорбции, для которого скорость химической реакции достаточно низка, так что [c.35]

    Процессы химической абсорбции, рассмотренные в главах 2—4, имеют ту особенность, что распределение концентрации реагента в жидкой фазе не влияет на процесс диффузии — реакции абсорбирующегося компонента. В общем такое допущение неправомерно, хотя и приемлемо для большого ряда практических случаев. Представленный в разделе 1.5 случай абсорбции, сопровождающейся мгновенной реакцией, является наиболее важным примером процесса химической абсорбции, для которого распределение концентрации жидкого реагента влияет на общую скорость абсорбции. [c.58]

    РЕЖИМЫ ХИМИЧЕСКОЙ АБСОРБЦИИ [c.64]

    Завершим картину возможных режимов химической абсорбции, которые были рассмотрены в разделе 2.2. (диффузионный режим), разделе 2.3 (кинетический режим), главе 3 (режим быстрой реакции) и в настоящей главе. [c.64]

    В табл. 1 приведены четыре режима химической абсорбции, которые охарактеризованы наложением условий применимости различных теорий и величинами пяти параметров. [c.65]

    Режимы химической абсорбции [c.65]

    В этой главе будет обращено внимание на такие случаи химической абсорбции, где величина имеет тот же порядок, что и величина [c.69]

    При анализе химической абсорбции в насадочной колонне — основная трудность заключается в учете изменения состава газовой и жидкой фаз вдоль колонны. В отличие от процессов физической абсорбции, должны быть рассмотрены условия противотока и прямотока, потому что последний с успехом можно применять в колонных аппаратах. В ряде случаев применение прямотока наиболее целесообразно, так как он позволяет достигать более высоких скоростей потоков по колонне данного сечения и исключает возможность захлебывания. Обе фазы в этом случае движутся в одном направлении под действием перепада давления по колонне. [c.79]

    Величина М равна отношению скорости потока жидкости к скорости потока газа. Эту величину можно принять близкой к единице (обычно Л = 1,3), В процессе химической абсорбции величину М можно взять меньше единицы, поскольку количество газа, которое может быть растворено в данном объеме жидкости, намного больше с, так как абсорбирующийся компонент претерпевает химическое превращение. [c.80]

    Возможны дальнейшие упрощения, основанные на том, что в любой практической обстановке М 1, в то время как > 1 но определению. Тем более, что практически Р намного больше единицы, так как в абсорбционных колоннах малы задержки жидкости, и поэтому их не используют для процессов химической абсорбции, протекающих в кинетическом режиме. [c.82]

    Учитывая, что при химической абсорбции А/ С 1 и сопоставлении уравнений (7.21) и (7.24), видим что в процессе химической абсорбции для достижения того же извлечения требуется большее число единиц переноса. По-видимому, это вызвано те м, что одно и то же количество газа должно быть растворено в меньшем количестве жидкости (Л1 < С 1). Преимущество процесса химической абсорбции заключается в том,что требуются колонны намного меньшего диаметра вследствие низкого расхода жидкости. Тем более, возможность прямоточной подачи позволяет поддерживать более высокие скорости жидкости и газа, которые приводят, в свою очередь, к снижению необходимого диаметра колонны и более высоким значениям/г а. Также следует отметить, что процессы химической абсорбции привлекательны потому, что во многих случаях физическая растворимость газа настолько мала, что процесс физической абсорбции в насадочной колонне практически не выполним из-за необходимости поддерживать высокое отношение объемов жидкости к объемам газа. [c.83]

    Рассмотрим процесс химической абсорбции с реакцией нулевого порядка, который протекает в насадочной колонне в режиме медленной реакции. [c.85]

    Мы рассмотрим в этом разделе процесс химической абсорбции с реакцией п-го порядка, протекающей в режиме медленной реакции в полом контакторе газ"—жидкость, снабженном мешалкой. Допустим, что контактор (рис. 17) можно рассматривать как идеальный смеситель, а жидкую фазу однородной по составу (состав тот же, что и на выходе жидкости). [c.87]

    Особенность режима быстрой реакции химической абсорбции— независимость скорости абсорбции на единицу поверхности от гидродинамических условий жидкой фазы. Действительно, из уравнения (3.22) [c.90]

    В отличие от этого, в процессе химической абсорбции, происходящем в режиме быстрой реакции, скорость абсорбции на единицу поверхности практически не зависит от возраста рассматриваемого поверхностного элемента, поэтому и предполагают что вклад старых элементов более значителен, чем в случае физической абсорбции. То же наблюдается и в диффузионном режиме. [c.90]

    Таким образом, определение понятия величины а до сих пор нуждается в уточнении, так как поверхность раздела, эффективная для массопереноса при химической абсорбции, зависит не только от гидродинамики жидкой фазы, но и от времени реакции. Проблема очень сложна и по этому вопросу в литературе имеется очень мало сообщений. [c.91]

    Расчет процесса химической абсорбции не составит труда, если сопротивление массопереносу в газовой фазе незначительно и константа скорости /г по колонне не изменяется. Действительно, в соответствии с положениями, рассмотренными в разделе 3.1, величина Со постоянно равна с и дифференциальный материальный баланс для необратимой реакции [уравнение (3.11)] имеет вид [c.91]

    В литературе мало сведений по химической абсорбции в режиме быстрой реакции, проводимой в насадочных колоннах. Работа Данквертса, Кеннеди и Робертса [2] относится к условиям перехода от медленной к быстрой реакции. Некоторые сведения по рассматриваемому вопросу имеются в работе [3]. [c.92]

    Процессы химической абсорбции, протекающие не в режиме медленной реакции, можно очень эффективно исследовать, используя абсорберы лабораторного типа, для которых в общем случае известна поверхность раздела фаз. В этих случаях по данным [c.92]

    Дисковая колонна (рис. 21 и 22) предложена Стефенсом и Моррисом [26]. К сожалению, как гидродинамика на элементе, так и явления на соединенных дисках до сих пор не получили должного объяснения. Тем не менее, эти абсорберы очень удобны в работе и успешно использовались различными исследователями [27— 32] для изучения химической абсорбции в условиях, приближающихся к режиму быстрой реакции. Создается впечатление, что [c.95]

    В настоящее время все больше появляется работ, в которых собственно химическое превращение веществ осуществляется совместно с целенаправленным разделением реакционной смеси в одном и том же аппарате. Сюда можно отнести работы, посвященные исследованию хроматографического эффекта в реакторах, реакционно-абсорбционным и реакционно-экстракционным процессам, а также процессам, в которых химическое превращение успешно сочетается с ректификацией или отгонкой. Известны реакционноосмотические процессы, реакционно-отделительные процессы и многие другие случаи направленного совмещения. В любом из перечисленных процессов химическая реакция составляет единую сложную систему с массопереносом. Естественно, монография Дж. Астарита далеко не восполняет пробела, образовавшегося за последнее время в данной области. Ее задача более скромна — систематизировать в основном знания в области химической абсорбции и дать некоторые толкования механизма столь сложного процесса. Отметим, что наряду с предпочтительностью изложения вопросов, в решении которых принимал непосредственное участие автор, в предлагаемой вниманию читателей монографии существуют и другие крайности. Так, например использованные автором модели массопереноса если и нельзя считать устаревшими, то во всяком случае, далеко не адекватными наблюдаемым явлениям, которые необходимо уточнить. Кроме того, библиография по затронутым в книге вопросам более чем скромна и за редким исклю- Йнием не включает многие исследования, выполненные отечественными исследователями хотя бы в последнее десятилетие. Однако эти серьезные недостатки не обесценивают рассматриваемую монографию, так как представленный в ней в обобщенном виде материал все же дает некоторое представление о современном совтоя-нии затронутых вопросов. [c.5]

    Этот вывод имеет больщое значение, поэтому рассмотрим его более подробно. Ясно, что если мы представим возможные процессы химической абсорбции в порядке увеличения скорости реакции, то первым обнаружим кинетический режим, вторым — диффузионный и затем — режим быстрой реакции. Принципиально можно представить существование такого абсорбера, для которого диффузионный режим невозможен. Практически в соответствии с изложенным в разделе 2.2, а также, согласно полученному выше результату, очевидно, чта диффузионный режим возможен всегда. Иными словами, если рассматривать практически возможные величины Ф и /д, то скорость реакции уже достаточно высока для поддержания концентрации в объеме жидкости Со, равной с, прежде чем она будет достаточно высокой, чтобы повлиять на провдсс диффузии в поверхностных элементах жидкости. Следовательно, неправомерно считать, что сйфс всякий раз, когда коэффициент [c.43]

    Уравнение (7.30) позволяет рассчитать требуемую высоту насадки, полагая известной задержку жидкости. Насадочпые колонны обладают малыми задержками жидкости. Таким образом, уравнение (7.30) показывает, что для процесса химической абсорбции в кинетическом режиме требуется исключительно большая высота насадки, если он проводится в насадочной колонне. [c.84]

    Химическая абсорбция в кинетическом режиме или в переходном от диффузиопного к кинетическому режиму может быть изучена в лаборатории при использовании малых насадочных колонн или абсорберов, которые воспроизводят характеристики насадочной колонны (см. раздел 8.2). Эти же процессы могут протекать в диффузионном режиме, если использовать абсорберы с большими значениями Ф, так что для исследования кинетики реакции лучшими аппаратами являются насадочные колонные абсорберы. [c.84]

    К первой категории можно отнести пленочные колонки, ламинарноструйные, вращающийся цилиндр и односферные абсорберы. Ко второй — дисковые колонки и многосферные абсорберы. Конечно, применение всех этих абсорберов не ограничивается исследованием химической абсорбции в режиме быстрой реакции. [c.92]

    Ламинарноструйный абсорбер, представленный на рис. 18, является вероятно, наилучшим лабораторным абсорбером для изучения химической абсорбции. Изменяя длину струи и скорости [c.92]

    Поверхность раздела ламинарных струй находится в пределах 0,3—10 см , а время диффузии от 0,01 до 0,1 сек. Теоретические расчеты скорости абсорбции в ламинарных струях удовлетворительно подтверждаются экспериментально для хорошо отрегулированной струи. Были успешно проведены исследования химической абсорбции в услО ВИЯХ, приближенных к режиму быстрой реакции [6—10]. [c.93]

    Таким же образом может быть обработана химическая абсорбция с реакцией первого порядка в режиме перехода от медленной к быстрой реакции. Решение этой задачи было проведено Астарита [22]. Пленочный односферный абсорбер хотя и более сложен, чем пленочная колонна, однако весьма удобен в работе теоретический расчет скоростей физической абсорбции хорошо подтверждается экспериментом [23], а вторичные эффекты малозначительны. Поверхность раздела фаз в нем составляет 10—40 м и время диффузии 0,1—1 сек. Одно экспериментальное исследование химической абсорбции в переходном режиме от медленной реакции к быстрой обращает на себя внимание ошибочной математической обработкой [24] исследования в режиме медленной реакции были успешными [25]. [c.95]


Смотреть страницы где упоминается термин Химическая абсорбция: [c.8]    [c.9]    [c.37]    [c.61]    [c.65]    [c.94]   
Смотреть главы в:

Очистка технологических газов -> Химическая абсорбция

Очистка технических газов -> Химическая абсорбция


Очистка технологических газов (1977) -- [ c.0 ]





ПОИСК







© 2020 chem21.info Реклама на сайте