Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализы электрона

    Между молекулярной структурой нефтяного сырья и кристаллической структурой изготовленной из него углеродной продукции существует четкая связь, что позволяет управлять процессами производства нефтяного углерода и его облагораживания. Кристаллит-ную структуру нефтяного углерода определяют методами рентгеноструктурного анализа, электронно-парамагнитного резонанса и др. [c.148]


    Согласно второй точке зрения, металлы, пассивные по определению 1, покрыты хемосорбционной пленкой, например, кислородной. Такой слой вытесняет адсорбированные молекулы НаО и уменьшает скорость анодного растворения, затрудняя гидратацию ионов металла. Другими словами-, адсорбированный кислород снижает плотность тока обмена (повышает анодное перенапряжение), соответствующую суммарной реакции М гё. Даже доли монослоя на поверхности обладают пассивирующим действием [16, 17]. Отсюда следует предположение, что на начальных этапах пассивации пленка не является диффузионно-барьерным слоем. Эту вторую точку зрения называют адсорбционной теорией пассивности. Вне всякого сомнения, образованием диффузионно-барьерной пленки объясняется пассивность многих металлов, пассивных по определению 2. Визуально наблюдаемая пленка сульфата свинца на свинце, погруженном в НаЗО , или пленка фторида железа на стали в растворе НР являются примерами защитных пленок, эффективно изолирующих металл от среды. Но на металлах, подчиняющихся определению 1, основанному на анодной поляризации, пленки обычно невидимы, а иногда настолько тонки (например, на хроме или нержавеющей стали), что не обнаруживаются методом дифракции быстрых электронов . Природа пассивности металлов и сплавов этой группы служит предметом споров и дискуссий вот уже 125 лет. Представление, что причиной пассивности всегда является пленка продуктов реакции, основано на результатах опытов по отделению и исследованию тонких оксидных пленок с пассивного железа путем его обработки в водном растворе К1 + или в ме-танольных растворах иода [18, 19]. Анализ электроно рамм пле- [c.80]

    Использование свойств симметрии позволяет существенно упростить анализ электронного строения молекул, включая и анализ молекулярных спектров. Не менее важны и вычислительные аспекты. Положим, чго базисные функции преобразуются по неприводимым представлениям пространственной группы симметрии молекулы, т.е. представляют так называемый симметризованный базис. При вычислении секулярного определителя в симметризованном базисе удается существенно понизить ранг определителя. Построение симметризован-ного базиса может быть выполнено различными способами, в том числе и с использованием операторов проектирования [c.200]

    Следующий этап в анализе электронного строения может быть связан с классификацией атомных орбиталей по неприводимым представлениям группы симметрии молекулы. В табл. (4.9) приведены в качестве примера характеры неприводимых представлений группы симметрии С ,, в табл. (4.10) указана классификация атомных орбиталей атома X в [c.209]


    Общий ход анализа электронных характеристик молекулы в методе МК ССП выполняют в определенной последовательности. [c.255]

    В данной главе рассматриваются наиболее важные и широка применяемые методы исследования структуры силикатов дифференциальный термический анализ, рентгеноструктурный и рентгенофазовый анализ, электронная микроскопия, инфракрасная спектроскопия, спектры комбинационного рассеяния и электронный парамагнитный резонанс. [c.150]

    Анализ электронных конфигураций гомонуклеарных молекул показывает, насколько хорошим приближением к реальности служит описание электронной структуры в методе МО ЛКАО. Вместе с тем имеется ряд опытных данных, не объяснимых без учета отталкивания между электронами. [c.82]

    А. с. более широко применяется, чем эмиссионный спектральный анализ. Для А. с. применяются оптические спектрофотометры, радиоспектрометры. Чувствительность некоторых методов А. с. зависит от многих причин и может изменяться в широких пределах (см. Спектрофотометрия. Колориметрический анализ. Электронный парамагнитный резонанс. Ядерный магнитный резонанс). [c.5]

    Длина волны в максимуме полосы поглощения иона Т (Н20)б+ равна 5,7-10-7 м. Ее экспериментальное значение 4,9-10- м близко к расчетному, что свидетельствует о больших возможностях структурного анализа электронных спектров ионов переходных металлов. [c.182]

    Современное содержание периодического закона. В основе теории периодической системы элементов лежат представления о специфических закономерностях построения электронных оболочек в атомах. Это особенно отчетливо видно из анализа электронных конфигураций атомов в зависимости от порядкового номера элемента (табл. 7). - [c.65]

    При анализе электронных конфигураций Ве-1 225= и Н-Ь приходим к выводу, что 1х-А0 Ве по энергии заметно отличается от 15-А0 Н и участия в образовании химической связи не принимает. 2з- и следующая за ней 2р-А0 Ве подходят по энергии к 1х-АО Н. Следующая Зв-АО Ве, как и 1,9-АО Ве, заметно отличается по энергии от 15-АО Н, поэтому в качестве базиса АО Ве выбираем 25- и 2р-А0. [c.104]

    Анализ электронных спектров значительно более эффективен при использовании метода ССП МО (см. гл. 9, 12). [c.248]

    АНАЛИЗ ЭЛЕКТРОННЫХ ЗАСЕЛЕННОСТЕЙ АТОМОВ И СВЯЗЕЙ ПО МАЛЛИКЕНУ [c.297]

    Что соответствует правилу Уэйда [21] топологический анализ электронного строения полиэдрических систем сопоставлен с теорией скелетных электронных пар в работах [66 —67 ]. — Прим. перев. [c.126]

    В последние годы появилось много сведений о строении биологических мембран. Важные данные были получены отчасти благодаря биохимическим методам (выделение различных химических соединений из клеточных мембран), рентгеноструктурному анализу, электронному и ядерному магнитному резонансу, спектроскопии, но в основном благодаря применению электронного микроскопа. Клеточные мембраны, такие, как мембрана эритроцита, состоят из примерно равных коли честв липидов и белков. В них присутствует также небольшое количество (несколько процентов) полисахаридов, которые соединяются с полипептидными цепями с образованием гликопротеидов. [c.465]

    Совр. состояние н перспективы развития К. х. Анализ электронного строения молекул (строения электронных [c.366]

    ПРИМЕНЕНИЕ АНАЛИЗА ЭЛЕКТРОННОЙ ДИФРАКЦИИ В ИССЛЕДОВАНИИ СТРУКТУРЫ ПОЛИМЕРОВ [c.137]

    Анализ электронной дифракции полезен при изучении монокристаллов (их формы и совершенства), степени кристалличности, текстурированных и неориентированных поликристаллических структур, вытянутых и ориентированных полимеров. [c.137]

    Вследствие коротких длин волн электронов, например 0,06 А при У = 40 кВ, максимальная интерференция электронов наблюдается при очень малых углах дифракции (9), благодаря чему на картине монокристалла, полученной с помощью анализа электронной дифракции, значительно больше рефлексов, чем при рентгеноструктурном анализе (рис. 29.2). [c.137]

    При применении анализа электронной дифракции продолжительность экспозиции для получения фотоснимка составляет несколько секунд, тогда как в рентгеноструктурном анализе это занимает несколько часов. [c.138]

    Количество образца, которое нужно для получения фотографии в анализе электронной дифракции, составляет примерно 10 г. Оптимальная толщина полимерного образца для электронной дифракции не превышает нескольких сотен ангстрем, тогда как при использовании рентгеноструктурного анализа образцы должны иметь толщину порядка нескольких миллиметров. [c.138]

    Анализ электронной дифракции можно сочетать с электронно-микроскопическим исследованием того же самого образца это дает возможность определить расположение элементарных ячеек и ориентацию молекулярных цепей внутри морфологических структурных единиц. [c.138]

    К сожалению, в большинстве парамагнитных комплексов ионов переходных металлов число атомов настолько велико, что расчет методом МО всего комплекса практически невозможен. Кроме того, даже если число атомов приемлемо, встает вопрос, может ли расчет, проведенный по расширенному методу Хюккеля или по методу ЧПДП, дать разумные волновые функции для соединений с такой большой разницей в величинах зарядов, какая существует между ионом металла и лигандом. При рассмотрении таких систем предполагается, что ион металла дает по крайней мере меньшее возмущение к вкладу протона в молекулярную орбиталь, представляющую собой главным образом МО неподеленной пары, и в другие молекулярные орбитали свободного лиганда, участвующие в связывании. Это допущение разумно для большинства комплексов, в которых прочность связи металл — лиганд составляет 10—20 ккал/моль. С учетом этого приближения проводится расчет по методу МО свободного лиганда и анализ электронной плотности с использованием волновых функций нейтрального лиганда (см. гл. 3). Последний позволяет определить, какими должны быть величины Л, если на каждой из орбиталей, которые, как ожидается, смешиваются с орбиталями металла при образовании комплекса, находится по одному электрону. Результаты таких расчетов для различных замещенных пи-ридинов представлены в табл. 12.1. [c.182]


    В работе [41] дан анализ электронно-микроскопических исследований (увеличение от 10 000 до 30 000 раз) асфальтенов из процесса Добен. Показано, что на уровне тонкой структуры различий между исследованными асфальтенами нет. Для них характерна пластинчатая структура в форме резко выраженных анизодиаме-трических частиц с некоторой шероховатостью рельефа поверхности, что отличает их от структуры графитовых слоев [41]. [c.203]

    Нажимов Ю. И., Рутман А. М., Фиалков А. С. Определение величины граничной поверхности дисперсных материалов методом количественного анализа электронно-микроскопических изображений. — Заводская лаборатория, 1989, >6 8, с. 57-60. [c.677]

    Студентам, изучающим курс органической химии по сокращенному варианту, известны в конечном результате не вое типы функциональных групп и дазке не все функциональные производные карбонильных соединений и карбоновых кислот. Для незнакомых функциональных групп важно уметь быстро находить аналогии с главными классами органических соединений. Для оценки изменения электронного состояния атомов углеродов, входящих в состав сложных функциональных групп, главную роль, конечно, играет анализ электронных эффектов окружающих элементов. Однако для быстрой аналогии с главными типами углеродсодержащих функциональных групп полезно оценивать степени окисления атомов углерода. Соединения с атомами углерода в одинаковой степени окисления, как правило, или относятся к одному и тому же классу органических соединений, или являются функциональными производными одного и того же класса органических соединений. [c.6]

    За 50 лет, прошедшие после разработки А. А. Байковым описанной теории твердения вяжущих, процессы эти весьма интенсивно изучались в работах советских и зарубежных ученых. Использование новых методов эксперимента—рентгенографического анализа, электронной микроскопии и других — наряду с широким применением чисто химических И физико-химических методов дали возможность весьма разносто- [c.171]

    Источником монохроматического излучения обычно служит разряд в атмосфере гелия при низком давлении с йу = 21,22 эВ [линия Я. = 58,4 нм (584А)]. Кванты данной энергии выбивают электроны не только с ВЗАО, но и других, не очень глубоко лежащих АО, что позволяет измерять ПЙ с разных атомных орбиталей. Для определения ПИ с более глубоких АО используется особая ламти с разрядом в гелии с йу = 40,7 эВ [линия Х= 30,4 нм (304А)]. Для этих же целей используется и рентгеновское монохроматическое излучение (РЭС). В спектре каждому орбитальному ПИ отвечает свой пик. При ионизации с вырожденных АО интенсивность выше, так как вероятность ионизации возрастает (например, для атома азота она втрое выше с р-АО, чем с 5-АО). ФЭС и РЭС используются и для исследования молекул, где наряду с орбитальной энергией они дают сведения о колебательных состояниях молекул, их структуре и т. н. [к-7] и [к-39]. Метод ФЭС" (РЭр является мощным средством для изучения электронной структуры вещества — атомов, молекул, твердых тел. Особое значение он приобрел для исследования химической связи и для элементного химического анализа —электронная спектроскопия для химического анализа (ЭСХА) [к-41]. [c.59]

    Таким образом, анализ электронной конфигурации атомов позволйет в общих чертах объяснить причины и особенности периодических изменений свойств химических элементов в зависимости от порядкового номера элементов. [c.67]

    Для анализа электронных распределений в рамках принятьи. в химии понятий (атомы, связи) необходимо выбрать схему разбиения электронной плотности на отдельные вклады атомов, связей. Поскольку эти понятия в молекуле теряют строгий смысл (см. разд. 5.6), разложение (7.56) на ко шоненты не является однозначным. Наиболее удобная схема такого разложения предложена Маллике-ном, ее называют анализом заселенностей по Малликену. [c.237]

    В случае альтернантных углеводородов электронная плотность не может быть использована как ИРС. Значения Aal уравнении (8.109) положительны, и предпочтительным центром реагирования с нуклеофилом будет атом с наибольшей (по абсолютной величине) самополяризуемостью. Таким образом, для АУ следует ожидать, что нуклеофильное замещение будет идти в том же направлении, что и электрофильное. Этот же вывод, согласно теореме парнос-ти для АУ, следует и из анализа электронных плотнос1гей на атомах в граничной МО. Однако при нуклеофильном замещении происходит перенос электрона с нуклеофила на низшую свободную МО субстрата (рис. 8.22). [c.324]

    Существует еще много других физических методов исследования структуры молекул. Теснейшим партнером ИК-спектроскопии является спектроскопия комбинационного рассеяния света (КР). Структурную информацию получают также из микроволновых (МВ) спектров. В последние годы быстро развивается фотоэлектронная спектроскопия (ФЭС), основанная на анализе электронов, выбитых из вещества под действием излучения. Спектроскопия электронного парамагнитного резонанса (ЭПР) в некотором смысле сходна с методом ЯМР, но основана на переориентации неспаренных электронов в молекуле. Помимо дифракции рентгеновских лучей используется дифракция электронов и нейтронов (электронография и нейтронография). Современные влектронные микроскопы позволяют увидеть> отдельные атомы. Каждый год появляются новые методы или модификации известных методов исследования структуры химических соединений. Наконец, в последние годы все шире применяются теоретические расчеты молекул методами квантовой химии. — Прим. перев. [c.27]

    Проведен анализ литературных и патентных источников по окислению D-глюкозы и этиленгликоля. Разработаны методики гетерогенно-каталитического окисления D-глюкозы и этиленгликоля молекулярным кислородом, приготовления новых катализаторов и их модификации разработаны методы анализа реакционной массы. Изучена каталитическая активность синтезированных катализаторов (Pd-Bi/Сибунит) в реакции селективного окисления D-глюкозы. Определены оптимальные условия проведения процессов окисления D-глюкозы и этиленгликоля при варьировании следующих параметров интенсивности перемешивания, температуры, количества субстрата, катализатора и подщелачивающего реагента, скорости подачи кислорода. Показано, что скорость и селективность процесса существенно зависят от pH среды и температуры. Получены результаты по определению характеристик катализатора, реакционной смеси субстрата и продукта физико-химическими методами ИК-, РФЭ-спектроскопией, рентгенофлюоресцентным анализом, электронной микроскопией дериватографическим анализом. Данные РФЭ-спектроскопии показали что в биметаллическом катализаторе Pd-Bi/Сибунит (в окислении D-глюкозы) - содержится как Pd (0) так и Pd (2+), а висмут в состоянии Bi(3+). Данные дериватографического анализа показали, что катализатор Pd-Bi/Сибунит устойчив при температурах до 400 С, что удовлетворяет условиям эксперимента. Методом ИК-спектроскопии, по анализу смещения характеристических полос субстрата до и после координации с катализатором, установлено, что имеет место существенное взаимодействие катализатора с субстратом. В каталитическом окислении этиленгликоля оптимизирован реакционный узел и условия процесса окисления этиленгликоля в стационарном слое катализатора. [c.67]

    В настоящее время на основе исследований различными методами (рентгеноструктурный анализ, электронная и оптическая микроскопия, ЭПР и др.) установлено, что карбонизованные углеродистые материалы состоят из конденсированных полициклических ароматических колец, упорядоченных в двухмерной плоскости и связанных в пространственный полимер боковыми углеводородными цепочками (неупорядоченная часть) [22, 2з] Двухмерные плоскости, уложенные в пачки параллельных слоев, образуют макрочастицы (кристаллиты) определенной структуры, которые принято называть графитоподобными слоями [24]. Коксы отличаются друг от друга соотношением упорядоченной ядер-ной части углерода, состоящей из атомов с Р -гибридизацией, к неупорядоченной (периферийной), включающей атомы с ЗР -, ЗР -и Гибридизацией, а также количеством и прочностью связей в боковых цепочках, что в конечном счете обусловливает их химическую активность и другие свойства. Б отличие от графита углеродные слои в 1 воблагорояенных нефтяных коксах и других углеродистых материалах беспорядочно ориентированы вокруг оси, перпендикулярной этим слоям (турбостратное расположение). В ядерную часть структуры или в боковые группы могут входить гетероатомы кислорода, серы, азота и металлов.  [c.7]

    Э. к. учитывают прежде всего при исследовании возбужд. состояний молекул, диссоциации и др., а также при анализе электронной структуры отрицат. мол. ионов. Особенно заметны корреляц. эффекты при вырождении энергетических состояний молекул. [c.700]

    Как уже упоминалось, анализ электронных переходов и координаты реакции был разработан главным образом Пирсоном [6]. Анализ орбитального соответствия в методе максимально симметричного состояния был разработан Халеви [21, 22]. Поскольку во внимание принимаются изменения электронных и колебательных характеристик в молекуле, указанные методы, вероятно, следует считать наиболее сгро-гими в плане предсказания возможности протекания химической реакции. Конечно, строгость здесь достигается ценой того, что применение этих методов усложняется, если сравнивать их с теми вариантами, [c.323]

    Молекулярно-орбитальный подход оказался плодотворным также для анализа электронных спектров молекул и отнесения полос к определенным квантовым переходам. Поскольку этот подход позволяет рассматривать отдельный орбитали, а не полную волновую ф-цию многоэлектронной молекулы, то можно выделить именно ту часть волновой ф-ции, к-рая меняется при электронном переходе, ионизации, в ходе хим. р-ции и т. д., н рассматривать далее только эту часть. В частности, если предположить, что при хим. превращениях достигается макс. перекрывание высших занятых мол. орбиталей одной молекулы и ш1зших вакантных мол. орбиталей другой, то при простейшем качеств, анализе реакц. способности возможно ограничиться рассмотрением только этих орбиталей (К. Фукуи, 1952). Условие макс. перекрывания высшей занятой мол. орбитали нафталина и низшей свободной мол. орбитали КО позволило объяснить преим. нитрование нафталина в а-положение. В случае моно.мол. р-ций молекулу условно делят на две части, одна из к-рьг включает высшие занятые мол. орбитали, а другая-низшие вакантные мол. орбитали (подробнее см. в ст. Граничных орбиталей теория). [c.122]

    Для этих же целей широко используют и Э. с. молекул в газовой фазе, хотя детальная информация м. б. получена в осн. лишь для малоатомных молекул. Для получения информативных электронно-колебат. спектров паров многоатомных молекул разработан спец. метод, основанный на охлаждении в-ва в сверхзвуковой стоте инертного газа. Совр. методы анализа электронно-колебат. спектров позволяют получать сведения о тонких эффектах спин-орбитальных, электронно-колебат. и электрон-фононных взаимод. в возбужденных электронных состояниях молекулы, об орбитальной природе этих состояний. [c.447]


Смотреть страницы где упоминается термин Анализы электрона: [c.61]    [c.333]    [c.261]    [c.333]    [c.110]   
Клейкие и связующие вещества (1958) -- [ c.0 ]




ПОИСК







© 2022 chem21.info Реклама на сайте