Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Режим движения

    Константа скорости реакции к = 0,4 (кмоль-с), начальная концентраций исходного вещества Сд = 0,25 кмоль/м средняя скорость потока у = 0,1 м/с. Режим движения жидкости ламинарный. Определить среднюю степень превра- щения и сравнить ее с предельным значением а при полном вытеснении. [c.331]

    Если изменять скорость движения жидкости в трубе, то начиная с некоторого значения скорости (критического) один режим течения сменяется другим. Закон, которому подчиняется переход движения жидкости из одного режима в другой, впервые был установлен английским ученым Рейнольдсом. В результате проведения опытов с подкрашенными струйками воды Рейнольдс установил, что режим движения тесно связан со значением определенного критерия, названного его именем. Критерий Рейнольдса Ре — это безразмерный параметр, определяемый по формуле [c.15]


    Поэтому режим движения потока в реакторе полного вытеснения часто называют режимом поршневого движения. [c.17]

    Можно показать, что если во внутренней трубе и межтрубном пространстве режим движения потоков одинаков, то получаются те же самые уравнения изменения масштаба как при учете одного, так и двух сопротивлений теплообмену. [c.454]

    На интенсивность теплообмена через стенку реактора оказывает влияние режим движения потока (распределение скоростей, степень турбулентности). Вследствие отказа от гидродинамического подобия влияние режима движения будет различным в модели и образце. Поэтому удобно представить этот процесс суммарно как конвекцию теплоты и характеризовать коэффициентом теплоотдачи а. [c.465]

    Нисходящее движение твердых частиц во взвешенном состоянии наблюдается в вертикальных трубах (стояках), предназначенных для транспортировки твердого материала из одной емкости в другую, расположенную ниже первой [157, 158]. В системах жидкость—жидкость режим движения капель во взвешенном слое считается достаточно перспективным как для проведения процессов теплообмена в колонных теплообменниках прямого контакта, предназначенных для опреснения морской воды [159, 160], так и для процессов массообмена в распылительных экстракционных колоннах [161, 162]. [c.95]

    Опытным путем найдено, что ламинарный режим движения воздуха в порах осадка сохраняется до тех пор, пока значение модифицированного числа Рейнольдса R m не превысит 100. Величину этого числа находят из равенства  [c.276]

    После того как все пассажиры вышли из вагонов, на платформе устанавливается стационарный режим движения с небольшой скоростью, значительно меньшей скорости свободного движения и . Отметим, однако, что достижение этого уровня скорости является ближайшей целью основной массы пассажиров, и при малейшей возможности (т. е. при снижении кс щентрации) они стремятся ее реализовать. Такое движение устойчиво, поскольку небольшие флуктуации концентрации или скорости движения пассажиров не приводят к существенному нарушению однородности потока. [c.136]

    В барабанных смесителях рекомендуют поддерживать каскадный режим движения материала в корпусе. При этом режиме частицы материала, находящиеся в глубине слоя, движутся по круговым траекториям вплоть до выхода на поверхность в верхней части ската, образованного свободной поверхностью слоя смешиваемого материала. После выхода частиц на поверхность слоя они скатываются по склону. Вся верхняя часть ската представляет собой слой небольшой толщины, состоящий из хаотически движущихся вниз частиц. Именно в этом тонком слое и происходит в основном процесс смешивания частиц. Каскадный режим движения частиц достигается при частоте вращения корпуса п < 0,6п,ф (где п р —критическая частота вращения корпуса, при которой частицы прижимаются к его стенкам — гл. 6, 6). [c.251]


    Движение мелющих тел во вращающемся барабане. Характер движения мелющих тел во вращающемся барабане зависит от его угловой скорости. При небольшой частоте вращения мелющие тела, например шары, увлекаются барабаном в сторону его вращения (рис. 6.30, а), поднимаются и затем скатываются параллельными слоями вниз. Такой режим движения шаров называется каскадным. Измельчение материала, находящегося при этом в барабане, 188 [c.188]

    При большей частоте вращения барабана (рис. 6.30, б) каждый шар в верхней зоне отрывается от слоя и свободно падает по параболической траектории, возвраш,аясь в свой слой с ударом (на рисунке шары соседних слоев для наглядности показаны светлыми и темными). Этот режим движения шаров называется водопадным. Измельчение материала происходит при этом режиме более эффективно, чем в предыдущем случае, и обусловлено воздействием удара, а также , частично, раздавливания и истирания. [c.189]

    В прямоточных смесителях компоненты смешиваются за счет хаотических перемещений частиц в поперечных сечениях потока, проходящего вдоль смесителя. В продольном направлении потока частицы движутся практически с одинаковой скоростью, т. е. без продольного их перемешивания. Подобный режим движения называют поршневым. Прямоточные смесители практически не обладают сглаживающей способностью, т. е. не способны изменить нарушения в соотношении компонентов, возникшие по тем или иным причинам во входном потоке. По этой причине их необходимо комплектовать высокоточными питателями. Такие смесители отличаются малыми энергетическими затратами, так как в большинстве из них частицы компонентов движутся через смеситель в разреженных потоках. [c.249]

    Режим движения параллельным линиям. При этом нан>- [c.33]

    Перемешивание газа почти в идентичном регенераторе исследовали Данквертс с сотр. путем импульсного ввода заранее измеренного количества гелия в воздушную линию пневмоподъемника катализатора и анализа отходящих газов через определенные интервалы времени. Было установлено, что режим движения газа через псевдоожиженный слой ближе к идеальному вытеснению, нежели к полному перемешиванию. Заметим, что отбор проб газа внутри слоя авторы не производили. [c.259]

    Рассмотренные условия образования вихрей на границе раздела потоков фаз проявляются одновременно в сложном взаимодействии. Исключительное влияние может оказать гидродинамическая обстановка процесса, создаваемая в том или ином диффузионном аппарате, и режим движения потоков, как это уже отмечалось выше. [c.148]

    Режим движения жидкости характеризуется числом Рейнольдса, которое вычисляется но формуле [c.34]

    Конве1сция жидкости (газа) может быть вынужденной либо свободной. В теплообменных аппаратах наблюдается вынужденная кон векция /КИДКОСТИ. Режим движения жидкости в них может быть ламинарным, переходным либо турбулентным. [c.149]

    Принимаем для углеводорода в зоне охлаждения режим движения турбулентный при Re = 10. В этом случае должна быть скорость углеводорода в трубах, равная [c.193]

    Расчет распределителя дисперсной фазы. Работа распылительных колонн во многом определяется конструкцией распределителя дисперсной фазы. Он должен подавать в рабочую зону колонны достаточно малые капли, по возможности близкие по размерам, и обеспечить равномерное распределение капель по объему аппарата. При близких размерах капель время пребывания нх в колонне не должно сильно различаться, и режим движения дисперсной фазы близок к режиму идеального вытеснения. Поэтому предпочтительнее капельный режим истечения, при котором образуются одинаковые капли (иногда наряду с однородными крупными каплями наблюдается образование капель—спутников значительно меньшего размера). [c.142]

    Уменьшение сопротивлений мас-со- и теплопереносу, лимитирующих скорость превращения. В некоторых случаях (см. раздел VIII) скорости массо- или теплопереноса через границу раздела фаз определяют скорость превращения. Ламинарная пограничная пленка оказывает основное сопротивление этим процессам, поскольку перенос массы через нее осуществляется только диффузией, а перенос теплоты — теплопроводностью, т. е. относительно медленно. За этой пленкой перенос массы и теплоты происходит главным образом конвекцией. Чем больше толщина пограничной пленки, тем выше сопротивление. В связи с этим наименее выгоден ламинарный режим движения потоков в системе. При высокой турбулентности потоков толщина пограничной ламинарной пленки меньше и, следовательно, легче и более быстро осуществляется транспорт массы и теплоты в другую фазу. [c.414]

    Низкая эффективность спроектированной колонны (высота, эквивалентная теоретической ступени, равна 8 м) обусловлена большим продольным перемешиванием в сплошной фазе (при расчете принято полное перемешивание). Если бы режим движения обеих фаз соответствовали идеальному вытеснению, необходимая высота рабочей зоны колонны составила бы около 1 м. [c.144]


    Для общего случая, когда режим движения газа является промежуточным между идеальным вытеснением и полным перемешиванием, можно записать  [c.334]

    Особенностью противоточного движения фаз является то, что как режим осаждения, так и режим движения во взвешенном состоянии могут существовать лишь в ограниченном интервале расходов фаз. При некоторых значениях расходов фаз, максимальньк для данной системы частицы-жидкость, происходит нарушение устойчивого стационарного течения. Это явление получило название захлебывания. В различных системах оно может проявляться по-разному. В системе твердое тело-жидкость наблюдается выброс частиц из колонны со сплошной фазой [c.95]

    Для каталитических реакций скорость межфазного обмена газом и режим движения газа через непрерывную фазу взаимосвязаны. Если, например, скорость межфазного обмена газом мала и проскок, следовательно, значителен, то влияние перемешивания газа в непрерывной фазе становится несущественным и им можно пренебречь поскольку реакция фактически происходит только в непрерывной фазе. [c.336]

    При выполнении расчета целесообразно сначала определить объем воздуха, продуваемого во время каждой стадии процесса через осадок поверхностью 1 м (принимая ламинарный режим движения воздуха в порах), а затем найти общий объем продуваемого воздуха для всех стадий при тех же условиях и умножить этот общий объем на величину поправки /турб и величину поверхности фильтрования. [c.277]

    Если режим движения жидкости ближе к турбулентному, чем к ламинарному, то, кроме рассмотренных выше факторов, следует учитывать также и влияние турбулентной диффузии. Значение коэффициента турбулентной диффузии во всем объеме реактора, за исключением его части, непосредственно прилегающей к стенке, как правило, значительно больше значения коэффициента обычной молекулярной диффузии, и его величина возрастает с увеличением числа Рейнольдса В этом случае радиальная компонента оказывает также положительное воздействие, поскольку она компенсирует эффекты, препятствующие применению простого метода расчета, описанного в 2.2 и основанного на модели идеального вытеснения среды. В ряде работ [22—29] показано, в каких случаях продольная турбулентная диффузия влияет обратным образом и исключает возможность исиользования модели идеального вытеснения. В недавно опубликованных работах Левеншпиля [30], Крамерса и Уэстертерпа [9] приводятся интересные обзоры по данному вопросу. В первом приближении для простых реакций можно принять, что, если [c.60]

    НЫМ является кольцевой режим движения, когда жидкость движется в виде пленки по стенке трубы, а пар — в середине трубопровода. Этот режим устанавливается при достаточно высокой скорости потока (Ргс>300) и высоком объемном па осодержании (р>0,95). Отметим, что для вакуумной перегонки мазута объемное паросо-держание потока в трубопроводе меняется в пределах р = 0,99— 0,998, а критерий Ргс = 250—2500. [c.180]

    Для режима деформированных эллипсоидальных капель и пузырей Ишии и Зубер [62] сделали следующее допущение. Поскольку режим движения эллипсоидальных капель и пузырьков, как и режим Ньютона для твердых сфер, является автомодельным, т. е. не зависящим от вязкости, то характер гидродинамического взаимодействия частиц в обоих режимах должен быть одинаковым. Отсюда следует, что, несмотря на различные абсолютные значения коэффициентов сопротивления для твердых частиц в режиме Ньютона и деформированных частиц, отношение С /С, а следовательно, и иг1и в обоих режимах определяются одними и теми же зависимостями. Таким образом, для расчета относительной скорости движения фаз в режиме деформированных капель и пузырей можно воспользоваться уравнением (2.51). При этом значение скорости м , для деформированных капель и пузырей авторы [62] рекомендуют вычислять по формуле, предложенной Хармати [63]  [c.79]

    НИИ она падает. Объемная концентрация частиц в первом режиме сравнительно невелика, а скорость частиц достаточно высока. Наблюдается интенсивное мелкомасштабное пульсационное движение частиц и значительное перемешивание как сплошной, так и дисперсной фазы по высоте аппарата. Движение частиц во втором режиме носит замедленный и достаточно регулярный характер . Объемная концентрация частиц Bbmie, чем в первом режиме, и при не слишком больших расходах сплошной фазы близка к концентрации плотной упаковки. Продольное перемешивание значительно снижено по сравнению с первым режимом. Частицы соприкасаются друг с другом. Капли и пузыри в этом режиме заметно деформированы. За эти особенности второй режим движения капель и пузырей получил название режима плотной упаковки [156] или плотного слоя [133]. Из-за высокой объемной кош1ентрации частиц, а следовательно, и значительной межфазной поверхности, а также низких значений коэффициентов продольного перемешивания режим движения частиц во взвешенном состоянии имеет преимущества по сравнению с режимом обычного осаждения при проведении процессов тепло- и массообмена. [c.95]

    Действительно, давно было замечено, что при ожижении твердых частиц газами псевдоожиженный слой не однороден [189]. Он представляет собой слой взвешенных частиц с достаточно низкой порозностью, в котором поднимаются заполненные газом свободные от частиц полости, получившие название пузырей. Во время подъема пузыри могут увеличиваться в размерах, коалесцировать, что иногда приводит к образованию поршневого режима псевдоожижения, представляющего собой чередование сгустков частиц и газовых полостей, занимающих все сечение аппарата. Поршневой режим движения твердой фазы наблюдается также и при транспортировании твердых частиц газом в вертикальных трубах. Ряд авторов, первым из которых бьш, по-видимому, Уоллис [94], вьщвинули предположение, согласно которому пузыри и поршни являются следствием нарастания всегда присутствующих в потоке малых возмущений порозности. Однако в экспериментах неустойчивость наблюдается далеко не во всех дисперсных потоках. Так, ожи-жаемые жидкостью слои небольших твердых частиц из не слишком плотного материала однородны. Опыты по ожижению частиц газами при высоком давлении указьгеают на явный переход от однородного режима псевдоожижения к пузырьковому в случае увеличения скорости газа [190]. Не наблюдаются неоднородности и при движении небольших капель и пузырей в жидкостях. [c.134]

    Дорожные испытания северного бензина проводились при температуре воздуха до 35° С на двух режимах движения — свободном и заданном. Свободный режим движения — это обычный эксплуатационный режим, который осуществляется по усмотрению водителя. Заданный режим — езда на постоянных, заданных скоростях (30, 50 и 80—90 км ч). В результате дорожных испытаний установлено, что в свободном режиме движения при использовании северного беТ13ина и температуре воздуха 35° С паровых пробок в системе питания не образуется. [c.206]

    Для компенсации потери напора внутри аппаратов устанавливают насосы, которые одновременно поддерживают турбулентный режим движения раствора, необходимый для снижения концентрационной поляризации. Турбулентность потока можно развивать также вращением ТФЭ в аппарате, пульсацией потока разделяемой смеси, наполнением напорных каналов микросферами или пористым когерентным материалом, формоизменением напорного канала ТФЭ по длине и т. д. С целью снижения концентра-циоиной поляризации рекомендуется в разделяемую смесь добавлять активный уголь, акриловую кислоту, а также прикладывать к мембране звуковые колебания низкой или инфравысокой частоты. [c.139]

    Результаты расчета Rei = 8560 (режим движения переходный), ai =1940 Вт/(м2-К), Re = 8350, = 3075 Bt/(m2-K), К = 770 Вт/(м2-К), F = 107,5 м=>. Из табл. П.З видно, что теплообменник с трубами длиной 3,0 м и номинальной поверхностью Fiwk = 116 м подходит с запасом Д = 7,9 %. Его масса AIivk = = 3550 кг, что на 400 кг меньше, чем в варианте П1к. [c.33]

    Наконец, если скорость газа возрастет до значения, соответствующего точке М, то число твердых частиц достигнет значения, соответствующего точке Н, т. е. минимально возможному расстоянию между частицами (в аспекте наложения полей обтекания индивидуальных частиц). Геометрическим местом точек таких состояний является линия ЬНН1К на рис. 1-4 при пересечении ее с кривой типа ММ однородная взвесь опять приобретает поршневой режим движения. Точка N соответствует моменту захлебывания . Линия МИ также является представителем семейства кривых постоянного массового расхода твердых частиц. [c.22]

    Кроме того, было установлено, что при подаче пневмоподъемником катализат( ра в плотную фазу слоя велика вероятность проскока некоторс й его части без тесного- контакта с остальной массой катализатора. Было также показано, что при подаче катализатора через ст( як непосредственно в плотную фазу байпасс отсутствует. Однакс при больших размерах аппарата и в данном случае весьма вероятно, что свежезагруженный катализатор не будет в достаточней мере перемешан с содержимым всего слоя. Наконец, было п( казано, что в отпарных колоннах с горизонтальными перегорг дками режим движения катализатора близок к идеальному вытеснению. [c.259]

    На теплообмен конвекцией существенное влияние оказывает гидродинамический режим движения теплоносителя и обрабатываемого материала. Режимы движения обрабатываемого материала бывают следующие 1) плотный, когда движение твердых мелкокусковых материалов в слое является результатом перегребания и пересыпания (это основной процесс для. многоподовых печей с вращающимся барабаном, сульфатсоляных и глетных печей) 2) плотный — фильтрующийся — основной процесс для известковообжигательных, фосфоритообжигательных шахтных печей 3) кипящий (псевдоожиженный, взвешенный) слой 4) газовзвесь (псевдогазовый). [c.58]

    В предельном случае может оказаться, что степень при Не стапел равной О, тогда режим движения не зависит от Не, т. е. не зависит от влияиия молекулярной вязкости. Такой режим называется автомодельным, он представляет собой режим развитой трубулентности. Автомодельный режим устанавливается в шероховатых трубах, при осаж- [c.133]


Смотреть страницы где упоминается термин Режим движения: [c.151]    [c.27]    [c.43]    [c.44]    [c.94]    [c.97]    [c.106]    [c.108]    [c.130]    [c.531]    [c.602]    [c.607]   
Справочник химика Том 5 Издание 2 (1966) -- [ c.363 ]

Справочник химика Изд.2 Том 5 (1966) -- [ c.363 ]




ПОИСК







© 2022 chem21.info Реклама на сайте