Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цитоплазма деление III

    У актиномицетов споры являются покоящимися клетками и одновременно репродуктивными структурами. По типу образования они делятся на две группы — эндогенные и экзогенные. Эндогенное образование спор внутри цитоплазмы материнской гифы, обнаруженное у представителей родов Thermoa tinomy es и A tinobifida, протекает аналогично описанному выще. У больщинства актиномицетов споры формируются экзогенно путем деления гифы перегородками на участки, каждый из которых представляет собой будущую спору. Экзоспоры большинства актиномицетов не содержат каких-либо дополнительных внутренних структур помимо тех, которые наблюдаются в вегетативной клетке. Стенка споры обычно значительно толще, чем стенка гифы, и в ней можно различить несколько слоев разной электронной плотности. Часто клеточная стенка окружена дополнительными наружными покровами. [c.73]


    В живых организмах постоянно происходит превращение свободной химической энергии в движение. Сокращение мышц, биение ресничек, ток цитоплазмы, деление клеток и активный транспорт-все это примеры способности клеток переводить свободную химическую энергию в механическую работу. Во всех этих случаях белковый мотор использует освобождаемую в химической реакции свободную энергию для перемещения связанной с ним моле- [c.197]

    Наличие ядра является главной, но не единственной структурной особенностью эукариотических клеток. В цитоплазме существует ряд других внутриклеточных органелл, окруженных своими собственными мембранами. Окислительное фосфорилирование и ряд предшествующих стадий окисления органических соединений протекают в митохондриях. Эти органеллы окружены двумя фосфо-липидными мембранами. Внутренняя мембрана, построенная из специфических белков, участвует в сопряжении переноса электронов от органических соединений к кислороду с фосфорилированием АДФ. Еще более сложными органеллами являются хлоропласты, в которых проходят все стадии фотосинтеза. Уникальной особенностью этих двух типов органелл является то, что они содержат ДНК, которая реплицируется перед их делением и несет информацию о некоторых белках и РНК, необходимых для формирования и функционирования этих органелл. Тем не менее большая часть информации, необходимой для производства всего набора как митохондриальных, так и хлоропластных белков, находится в хромосомной ДНК. [c.25]

    Обнаружены эубактерии, осуществляющие фотосинтез кислородного типа, весьма сходные с цианобактериями, но отличающиеся от них составом фотосинтетических пигментов отсутствием фикобилипротеинов и наличием хлорофилла Ь. Организмы названы прохлорофитами. В девятом издании Определителя бактерий Берги они выделены в порядок Pro hlorales. В составе порядка 3 рода, различающихся морфологическими и некоторыми физио-лого-биохимическими признаками. Это одноклеточные (сферические) или многоклеточные (нитчатые) формы, неподвижные или подвижные. Размножаются бинарным делением. Клеточная стенка грамотрицательного типа, напоминает таковую цианобактерий. Нити ДНК, не отграниченные от цитоплазмы мембраной, располагаются в центральной области клетки. [c.322]


    Важной составной частью цитоплазмы являются микротрубочки— полые стерженьки, наружный диаметр которых составляет 24 2 нм, а внутренний 13—15 нм. Наиболее удивительна их форма в жгутиках и ресничках эукариотических клеток (рис. 1-5). Устойчивые микротрубочки ресничек являются, по-видимому, неотъемлемой частью аппарата, обеспечивающего движение жгутиков (Приведенный справа рисунок взят из работы .) Лабильные (т. е. образующиеся, а затем распадающиеся) микротрубочки обнаруживаются чаще всего в цитоплазме клеток, способных к перемещению (например, в псевдоподиях амеб). Митотическое веретено (гл. 15, разд. Г.9) представляет собой набор микротрубочек, обеспечивающих перемещения хромосом в делящейся клетке. Микротрубочки обнаруживаются также в плоскостях деления растительных клеток. [c.276]

    Клонирование Долли из ядра дифференцированной клетки и трех других овец из ядер эмбриональных клеток удалось осуществить благодаря переносу ядер из клеток, находящихся в стадии покоя (Од), и, возможно, особенностям эмбриогенеза этого животного. Дело в том, что в течение первых трех делений зиготы овцы, занимающих несколько суток, происходит только репликация ДНК, ни один из генов не экспрессируется. Предполагается, что за это время введенная ДНК освобождается от специфичных для клетки регуляторных белков, а соответствующие гены эмбрионального развития связываются с инициаторными эмбриональными белковыми факторами из цитоплазмы яйцеклетки. [c.426]

    А — деление путем образования поперечной перегородки Б — деление путем перетяжки В — почкование Г — множественное деление 1 — клеточная стенка (толстой линией обозначена клеточная стенка материнской клетки, тонкой — заново синтезированная) 2 — ЦПМ 3 — мембранная структура 4 — цитоплазма, в центре которой расположен нуклеоид 5 — дополнительный фибриллярный [c.59]

    Репликация, транскрипция и трансляция геномов органелл. В хлоропластах и митохондриях ДНК представлена небольшими двухцепочечными молекулами, обычно кольцевыми, и не связана с гистонами. Таким образом, генетическая информация органелл содержится в структурах, весьма сходных с хромосомами прокариот, хотя и значительно меньших по размерам. В каждой органелле имеется множество копий ДНК (до 40—50 в некоторых хлоропластах). Кроме того, хлоропласты и митохондрии содержат аппарат транскрипции и трансляции, включая специфические для органелл рибосомы, которые меньше цитоплазматических 808-рибосом и близки по величине к 708-рибосо-мам прокариот. Синтез белка в органеллах ингибируется хлорам нико-лом и некоторыми другими антибиотиками, подавляющими этот процесс и у прокариот, но не влияющими на синтез белка в цитоплазме эукариотической клетки. Таким образом, хлоропласты и митохондрии обнаруживают ряд важных черт фундаментального сходства с прокариотическими клетками. Митохондрии обладают еще одной особенностью, характерной для клеток, но не для других компонентов клетки они образуются путем деления предсуществующих органелл. Это продемонстрировано также в отношении многих типов хлоропластов у водорослей. У высших растений зрелые хлоропласты развиваются из более простых структур — пропластид на стадии пропластид и происходит воспроизводство этих органелл. [c.49]


    Формирование споры начинается с того, что у одного из полюсов клетки происходит уплотнение цитоплазмы, которая вместе с генетическим материалом, представляющим собой одну или несколько полностью реплицированных хромосом, обособляется от остального клеточного содержимого с помощью перегородки. Последняя формируется впячиванием внутрь клетки ЦПМ. Мембрана нарастает от периферии к центру, где срастается, что приводит к образованию споровой перегородки. Эта стадия формирования споры напоминает клеточное деление путем образования поперечной перегородки (см. рис. 20, А). Следующий этап формирования споры — обрастание отсеченного участка клеточной цитоплазмы с ядерным материалом мембраной вегетативной клетки, конечным результатом которого является образование проспоры — структуры, расположенной внутри материнской клетки и полностью отделенной от нее двумя элементарными мембранами наружной и внутренней по отношению к проспоре. [c.70]

    Каждая клетка после деления попадает в свою окружающую среду , которая характеризуется определенной специфичностью. Эта специфичность может быть связана (прямым или косвенным способом) с концентрацией воды в системе, с природой и количеством углекислого газа, кислорода, других компонентов атмосферы, с наличием биоактивных молекул-гормонов, других метаболитов, а также с рядом дрз их факторов. Последними являются температура, интенсивность и спектр проникающей радиации, значения электромагнитных градиентов и т. д. Полагают, что упомянутые факторы могут влиять на дифференцировку через цитоплазму, которая в свою очередь воздействует на гены. Разумно допустить, что различие упомянутых факторов связано с различным положением клеток в развивающейся живой гетерогенной системе. Здесь уместно провести простую аналогию между положением клетки в развивающейся ткани эмбриона и ростом листа растения (например, дерева). Растущий лист ориентируется в пространстве в соответствии с максимальной интенсивностью потока солнечной энергии. Количество солнечной энергии, аккумулируемой листом, зависит как от прямого доступа солнечного света, так и потока рассеянного света, определяемого пространственным расположением листа среди его соседей (других листьев). Эти другие листья играют роль компонентов внутренней окружающей среды рассматриваемого листа. Они являются своего рода окружающими клетками . Очевидно, что представленная аналогия позволяет [c.23]

    Обоснованно принято считать, что большинство многоклеточных растений и животных начинает жизненный цикл с одной клетки - зиготы (оплодотворенного яйца). В результате многократных митотических делений из этой клетки возникает сложный, высокодифференцируемый организм. Этот процесс называют ростом и развитием. При этом упомянутый процесс включает дифференци-ровку. В результате дифференцировки клетка приобретает определенную структуру и, размножаясь, производит себе подобные. Так, в многоклеточном организме возникают различные ткани (органы) и происходит формирование сложного организма. Как полагают, причина этого явления не ясна [30]. Однако рост и развитие, несомненно, связаны с индукцией и репрессией генов. Считают, что дифференцировка проявляется через сложные взаимодействия между ядром, цитоплазмой и окружающей средой клетки. В литературе обсуждены различные этапы механизма дифференцировки. Их, естественно, весьма много [30, 31]. [c.22]

    Прежде чем обсуждать общие механизмы, благодаря которым в первоначальном поле однотипных клеток возникают местные различия, мы рассмотрим феномен асимметричного деления клеток, наблюдаемый у многих видов на ранних стадиях дробления, где важную роль играют локальные детерминанты клеточных свойств, находящиеся в цитоплазме яйца (рис. 15-39). Это наиболее прямой способ пространственно упорядоченной детерминации различий между клетками. [c.90]

    Потеря сферической формы, указывающая на регене-раияю клеточной стенки iИигpaция хлоропласты более равномерно окружают цитоплазму Деление ядра [c.149]

    Цитоплазма эвглены содержит ядро и многочисленные (более двадцати) зеленые овальные хлоропласты, придающие ей зеленый цвет. В хлоропластах содержится хлорофилл, с помощью которого этот организм фотосинтезирует клеточное вещество, как растения. Но хлорофилл исчезает, когда эвглена попадает в темноту. В новых условиях она усваивает растворенные органические вещества. Следовательно, этот организм на свету проявляет шризнаки растения, а в темноте — животного, Продукты обмена и избыточная влага выводятся из организма через сократительную вакуоль. Разм 10жается эвглена простым делением. Образует цисты. [c.277]

    Осн. ф-ция К.-активация мн. ферментов аденилатциклазы, фосфодиэстеразы циклич. нуклеотидов, киназы фосфо-рилаз и легких цепей миозина (киназы-ферменты, катализирующие перенос фосфорильной группы с АТФ на субстрат), Са -зависимой протеинкиназы цитоплазмы и мембран, фосфолипазы Aj и др. Благодаря этому он влияет на гликогенолиз и липолиз, секрецию нейромедиаторов, адренергич. передачу регуляторного сигнала, изменяет функциональные св-ва рецепторов, ускоряет активный транспорт Са в сердце и мозге, препятствует гуанозинтрифосфат-зависимой полимеризации тубулина (белок, из к-рого состоят жгутики и реснички клеток животных и растений), влияет на скорость деления клеток. [c.293]

    Микротрубочки участвуют в клеточном делении и в других биологически процессах [5] по-видимому, они образуют в цитоплазме структуру, с помошьи которой происходит обмен информации между органеллами. [c.108]

    Само деление клеток, начиная с появления двух первых бластомеров, есть результат внутриклеточных взаимодействий, регуляции активности генов веществами цитоплазмы п клеточной мембраны. Дифференцировка на ранней стадии (бластула) определяется двумя причинами, имеющими самый общий характер. Первая из них — неоднородное распределение вещества в цитоплазме исходной зиготы, вторая — неоднородность среды внутри клеточного шара, получающегося в результате дробления. II то, и другое означает наличие позиционной информации (Вольперт). Наряду с этими факторами онтогенез определяется контактной и гуморальной регуляцией. [c.574]

    Следующая фаза развития, называемая созреванием яйцеклетки, начинается лишь с наступлением половой зрелости. Под влиянием гормонов (см. ниже) происходит первое деление мейоза хромосомы снова конденсируются, ядерная оболочка исчезает (этот момент обыкновенно принимают за начало созревания), и реплицированные гомологичные хромосомы расходятся в дочерние ядра, каждое из которых содержит теперь половину исходного числа хромосом (одиако эти хромосомы отличаются от обычных тем, что состоят из двух сестринских хроматид). Но цитоплазма делится очень несимметрично, так что получаются два ооцнта второго порядка, резко различающихся по величине один представлен маленьким полярным тельцем, а другой-большой клеткой, в которой заложены все возможности для развития. И наконец, происходит второе деление мейоза две сестринские хроматиды каждой хромосомы, полученной при первом делении, отделяются друг от друга в результате процесса, сходного с анафазой митоза, с той разницей, что теперь имеется лишь половина обычного диплоидного числа хромосом. После расхождения хромосом цитоплазма большого ооцита второго порядка вновь делится асимметрично, что ведет к образованию зрелой яйцеклетки и еще одного маленького полярного тельца при этом обе клетки получают гаплоидное число одиночных хромосом. Благодаря двум несимметричным делениям цитоплазмы ооциты сохраняют большую величину, хотя они и претерпели два деления мейоза. Все полярные тельца очень малы, и они постепенно дегенерируют. На какой-то стадии описанного процесса, различной у разных видов, яйцеклетка освобождается из яичника (происходит овуляция). [c.29]

    Все типы существующих клеток делят на два основных класса прокариотические и эукариотические. Наиболее замечательная особенность последних заключается в наличии специальной внутриьслеточной структуры — ядра, которое содержит преобладающую часть ДНК и, следовательно, наследственную информацию. Ядро отдедено от внутреннего содержания клетки — цитоплазмы — ядерной мембраной. Кроме ДНК ядро содержит ряд белков, в первую очередь тех, которые участвуют в репликации и транскрипции, а также необходимы для деления клеток. В ядре эукариотических клеток ДНК существует в форме специальных органелл — хромосом. Эти органеллы можно увидеть в световом микроскопе на определенной стадии деления клетки. [c.23]

    Клеточный цикл эукариотических клеток, подвергающихся последовательным митотическим делениям, состоит из двух основных периодов. Первая стадия, называемая интерфазой, заключается в накоплении химических соединений необходимых для деления. Обычно в интерфазе выделяется две фазы С и 8 6-фаза создает предпосылки, необходимые для последующего деления. Во время фазы 8 происходит репликация и, таким образом, все хромосомные ДНК появляются в виде двух идентичных двуцепочечных копий. За интерфазой после короткой промежуточной фазы начинается митоз. Первая фаза митоза (профаза) заключается в образовании двух четко очерченных дочерних хромосом, соединенных в их центральной части — центрамерном районе. Эти структуры называют хроматидами. Необходимо отметить, что конденсация происходит одновременно с разрушением ядерной мембраны. После образования хроматид на следующей стадии (метафазе) они движутся к середине делящейся клетки и собираются все на одной плоскости. На этой стадии хромосомы теряют все мембранное окружение. Потом все пары начинают разделяться, двигаясь к полюсам материнской клетки (анафаза). Как только хромосомы собираются у соответствующих полюсов, начинается их деконденсация. Это сопровождается сборкой новых ядерных мембран и образованием двух новых ядер (телофаза). Конечная стадия митоза заключается в разделении цитоплазмы и, соответственно, образовании двух разделенных дочерних клеток. [c.25]

    Цитоплазма тонко реагирует на физиологическое состояние клетки. Так, в покоящихся особях ее вязкость лишь не намного превышает вязкость воды, тогда как при делении эти показатели резко изменяются в сторону их возрастания. В этот период возможен обратимый переход цитоплазменного содержимого из золя в гель (например, образование ахроматиновых нитей веретена) — тиксотропия (от. лат. tixis — прикосновение trepo — изменяться). [c.21]

    Ситуация иного типа была рассмотрена Гринспеном в его модели деления биологических клеток. В самой модели очень вязкий слой цитоплазмы вблизи клеточных мембран, содержащий способные к сокращению микрофиламенты актомиозина, рассматривается как "поверхность" с "эффективным поверхностным натякением", включающим напряжения, обусловленные сеткой ми1фофиламенх. Поскольку эффективное поверхностное натяжение увеличивается с увеличением концентрации химического "топлива в этом случае имеем ситуацию, заставляющую вспомнить об обратных поверхностно-активных веществах, но гиббсовский закон адсорбции неприменим, конечно, к вариациям эффективного. поверхностного натяжения. [c.138]

    Протопласт. Содержимое бактериальной клетки без клеточной оболочки получило название протопласта. Протопласт состоит из цитоплазмы, покрытой мембраной. Разработан метод освобождения протопласта грамположительных бактерий посредством обработки клеток ферментом лизоцимом. Оболочки клеток при этом растворяются, а протопласты сохраняются живыми, способными к росту, делению, синтезу протеинов и нуклеиновых кислот [363]. Цитоплазма представляет собой водянистую или слегка вязкую массу — сложную композицию белков, жиров, углеводов и многочисленных других органических соединений, минеральных веществ и воды. Цитоплазма не гомогенная коллоидная жидкость, она содержит множество субми-кроскопических мембранных структур, выявленных электронной микроскопией. В цитоплазматических белках найдено 20 различных аминокислот, обусловливающих различные свойства белков. Например, аминокислота тирозин имеет спиртовые группы (ОН) в боковой цепи и этим обусловливает гидрофильность цитоплазмы. Липоиды, наоборот, обусловливают гидрофобность цитоплазмы. [c.26]

    Клетки трибов и водорослей по своей организации похожи на клетки высших растений. Основными частями клетки являются оболочка, протоплазма (цитоплазма) и ядро (нуклеус). В состав оболочки входит целлюлоза. Протоплазма представляет собой сложное коллоидное образование с резко выраженным поверхностным натяжением. В этой коллоидной системе непрерывной фазой является вода, а дисперсной фазой — липопротеиновые соединения. В протоплазме одноклеточных грибных организмов — дрожжей— легко обнаруживаются вакуоли, представляющие собой пустоты, заполненные клеточным соком. При делении вакуоли дочерней клетки образуются путем отпочковы-вания от вакуоли материнской клетки. В протоплазме имеются также мельчайшие гранулы-—рибосомы (микросомы), размеры которых составляют 200 ммк, обнаружить их можно лишь методом электронной микроскопии. Б рибосомах, состоящих из рибонуклеиновой кислоты и белка, происходит белковый синтез- [c.113]

    Одна из загадочных и уникальных особенностей спермиев состоит в том, что в процессе их развития митотические и мейотические деления не сопровождаются полным, доведенным до конца делением цитоплазмы (цитокинезом) поэтому все дочерние клетки, за исключением наименее дифференцированных сперматогоний, соединены тдатоплазматическими мостиками (рис. 14-40). Такие мостики остаются до самого конца дифференцировки спермиев, т.е. ДО того момента, когда отдельные сперматозоиды переходят в просвет канальцев. Это означает, что все потомки одной сперматогонии сохраняют цито- [c.36]

    Спермий (сперматозоид) в высокой степени специализирован для функции внесения своей ДНК в яйцо. Это маленькая и компактная клетка с необычайно сильно сконденсированным ядром и длинным жгутиком. Сперматогенез отличается от оогенеза в нескольких важных отношениях. Во-первых, в то время как у многих организмов весь пул ооцитов образуется еще на ранней стадии эмбрионального развития самки, у самцов после наступления половой зрелости в мейоз непрерывно вступают все новые и новые половые клетки. Во-вторых, если из каждого ооцита первого порядка образуется лишь одна зрелая яйцеклетка (а три остальных гаплоидных ядра, образовавшихся в мейозе, дегенерируют ), то каждый сперматоцит первого порядка дает начало четырем зрелым спермиям. В-третьих, поскольку при митотическом делении зрелых сперматогоний в мейозе всех спермапюцитов цитокинез не доводится до конца, потомки одной сперматогонии развиваются в виде синцития, сохраняя непрерывность цитоплазмы на протяжении всего развития. В связи с этим дифференцировка спермия может контролироваться продуктами хромосом от обоих родителей, хотя спермий в отличие от яйцеклетки проходит конечные этапы развития в гаплоидном состоянии. [c.40]

    Это явление можно продемонстрировать, блокируя деление клеток иа ранних стадиях развития эмбриона с помощью химических агентов. После обработки 2-4-клеточных зародышей смесью колхицина и цитохалазина В разделение цитоплазмы тотчас же прекращается, тогда как синтез ДНК продолжается, и вскоре каждый из бластомеров становится высокопол -плоидным. Примерно в то время, когда в нормальных условиях начинаегО клеточная дифференцировка, определенный бластомер-предшественник меток определенного специализированного типа-начинает синтезировать продукты, характерные для клеток данного типа. Если блокировать дробление я  [c.116]

    Грибы являются гифальными микрсюрганязмами. Их нитчатые структуры имеют жесткую клеточную стенку, растут верхушечной частью мицелия. Гифы у многих грибов разделены перегородками, имеющими поры, через которые цитоплазма и ядра могут переходить из одной клетки в другую в направлении растущей верхушки мицелия (апекса). После деления ядра в предапексовой части одно из них поступает в апекс и отгораживается перегородкой, затем верхушка этой клетки вновь образует выпячивание и т. д. Высокое давление, развиваемое при росте мицелия и обеспечивающее внедрение мицелия в субстрат, имеет важное значение в механизме заселения материала, нарушении целостности его поверхности и дальнейшего разрушения [3]. [c.462]

    Биологические функции. Белки могут выполнять в живых организмах самые различные функции катализировать (ферменты) и регулировать (гормоны) биохимич. реакции входить в состав соединительной ткани (напр., коллаген) или мышц (актин, миозин) служить резервными питательными веществами (гранулы белка в цитоплазме) и др. Функции дезоксирибонуклеиновой к-ты — передача генетич. информации из поколения в поколение при клеточном делении. Этот Б. служит исходной матрицей при передаче информации внутри клетки. Рибонуклеиновая к-та также участвует в этом процессе, приводящем к синтезу специфич. белков клетки. Полисахариды могут служить резервными питательными веществами (напр., крахмал, гликоген), выполнять структурные функции (напр., целлюлоза полисахариды соединительной ткани), обеспечивать специфические свойства поверхности клеток (напр.1, антигенные полисахариды микроорганизмов) или защиг ту организма в целом (напрнмер, камеди и слизи растений). [c.128]


Смотреть страницы где упоминается термин Цитоплазма деление III: [c.275]    [c.277]    [c.29]    [c.198]    [c.245]    [c.111]    [c.19]    [c.71]    [c.176]    [c.524]    [c.60]    [c.220]    [c.125]    [c.255]    [c.23]    [c.131]    [c.91]    [c.153]    [c.171]    [c.185]    [c.320]    [c.37]   
Биология Том3 Изд3 (2004) -- [ c.145 , c.154 ]





ПОИСК





Смотрите так же термины и статьи:

Делении

Цитоплазма



© 2020 chem21.info Реклама на сайте