Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Летучие вещества в присутствии нелетучих

    Первое из этих свойств мы уже рассматривали для случая, когда растворенное вещество является летучим и его молекулы присутствуют в паре наряду с молекулами растворителя. Если растворенное вещество нелетучее, то Рв<Ра, общее давление пара над раствором равно давлению пара растворителя (р= =Ра°-Л а) и выражение (3.3) для относительного понижения давления пара растворителя можно записать в виде [c.134]


    К таким особенностям относится прежде всего возможность определения летучих компонентов в объектах, 11р мой ввод которых в газовый хроматограф невозможен или нецелесообразен из-за недостаточной чувствительности детектирующих устройств, присутствия легко разлагающихся веществ, нежелательности загрязнения колонки нелетучим остатком или опасности нарушения существующего в системе химического равновесия. Примером могут служить широко известные в настоящее время методы анализа крови на содержание алкоголя и ядовитых летучих веществ, эффективность и официальное признание которых способствовали развитию техники АРП. Сюда же относятся методы определения остаточных мономеров и растворителей в полимерных материалах, также принятые в качестве стандартных. Проблема санитарно-гигиенического контроля полимерных материалов методом газовой экстракции стала объектом пристального внимания и получила особую актуальность в связи с обнаружением канцерогенных свойств винилхлорида и необходимостью жесткого контроля его содержания в многочисленных изделиях широкого потребления. [c.9]

    Мешающие вещества. Определению мешают летучие (с паром) фенолы (фенол, крезолы), образующие с применяемым реактивом также окрашенные продукты реакции. Если летучие фенолы присутствуют в анализируемой сточной воде, то ароматические углеводороды предварительно отгоняют из щелочного раствора и оп ределяют их в отгоне. Из нелетучих фенолов гидрохинон не мешает определению ароматических углеводородов, пирокатехин дает настолько слабоокрашенный продукт реакции, что им в большинстве случаев можно пренебречь. [c.273]

    Если в органическом веществе присутствуют другие элементы, кроме углерода, водорода и кислорода, то летучие продукты их окисления улавливают за пределами трубки для сожжения, в специальных аппаратах, и эти продукты окисления, таким образом, не мешают количественному определению углерода и водорода в виде двуокиси углерода и воды. Такой принцип работы дает возможность одновременно с углеродом и водородом определять другие элементы (нелетучие продукты сгорания определяются путем взвешивания остатка). [c.39]


    В ископаемых углях в виде различных соединений содержится более 70 элементов периодической системы Менделеева. Известно, что уголь состоит из органической и минеральной частей и влаги. В минеральной и органической частях содержатся сернистые соединения, которые имеют особое значение. Кроме того, в обеих частях угля присутствуют некоторые рассеянные и редкие элементы. В веществе угля различают также летучую часть и нелетучий остаток. К летучим относятся вещества, получающиеся при нагревании угля без доступа воздуха. [c.8]

    С практической точки зрения использование этих геохимических знаний привело к открытию теории углеродного коэффициента, которая связывает нахождение нефти в недрах с катагенезом (метаморфизмом) углей. Эта концепция была разработана Девидом Уайтом в 1915 г. Он показал, что нефтяные залежи располагаются там, где угли характеризуются устойчивым содержанием нелетучего углерода на уровне 60 %. При большем содержании углерода (в пределах 65-70%) присутствуют газовые залежи [8]. Фактически углеродный коэффициент - это показатель углефикации ОВ пород, основанный на данных лабораторного коксования углей или концентратов ОВ пород. В настояш,ее время углеродный коэффициент для прогноза нефтегазоносности используется редко и вытеснен другими, более точными и более легко определяемыми параметрами, такими, как выход летучих веществ и показатель отражательной способности витринита. [c.17]

    Если нелетучее вещество присутствует в большом количестве, как принято было при выводе уравнений (24), (25) и (26), то парциальная упругость водяного пара возрастает в течение процесса дестилляции вследствие уменьшения концентрации летучего компонента в загрузке и являющегося результатом этого уменьшения р . Так как обычно бывает желательно перегнать раствор до небольшой остаточной концентрации компонента В, то к концу процесса дестилляции р максимально приближаемся к следовательно, выбор такой рабочей температуры, при которой упругость насыщенного водяного пара больше 7г, будет гарантировать от конденсации острого пара на некоторое время в течение процесса. Например, если дестилляция проводится при атмосферном давлении, то минимальная температура, выбранная для достижения этой цели, будет 100°С или немного выше. [c.690]

    Мышьяк — элемент, наиболее трудно поддающийся количественному определению. Удобнее всего определять мышьяк, сжигая вещество по вышеуказанному способу Васильева. Другие методы основаны на окислении мышьяка, входящего в состав О. В., до мышьяковистой и мышьяковой кислот посредством перманганата дымящей азотной кислоты или просто — концентрированной серной кислоты в присутствии меди Летучие мышьяковистые соединения предварительно окисляют в соответствующие нелетучие мышьяковые кислоты посредством персульфата аммония Окисленный тем или иным способом мышьяк определяется далее или весовым путем, в виде пиро-мышьяковокислого магния, или же объемным путем — титрованием мышьяковистой кислоты иодом 11 18 перманганатом i или бро-матами [c.204]


    Так как растворенные углеводороды затем выделяются перегонкой с водяным паром, растворитель должен быть нелетуч. Присутствие в растворителе летучих примесей, которые могли бы ото-гнаться вместе с легкими углеводородами, повлияло бы на летучесть полученного бензина. Не допустить это можно правильным выбором интервала температуры кипения абсорбционного масла, которая должна лежать значительно выше температуры кипения абсорбируемого вещества. [c.469]

    Герике [12] и Кекуле [13] нашли, что дифенилсульфон превращается при действии серной кислоты в бензолсульфокислоту и поэтому, подобно сульфированию, образование сульфона является обратимой реакцией. В технике достигают превращения в бензолсульфокислоту выше 80% взятой серной кислоты. Этот метод сульфирования применим и к другим летучим углеводородам, например к толуолу и ксилолам. В случае высококипящих веществ можно удалять образующуюся воду посредством вспомогательной не реагирующей с серной кислотой жидкости [14] (нанример, четыреххлористого углерода) или инертного газа (например, углекислоты). Если сульфируемое вещество, например бензолсульфокислота, нелетуче, реакцию можно провести под уменьшенным давлением [15], с тем чтобы вода отгонялась. Другим методом поддержания концентрации серной кислоты на достаточном уровне для продолжения хода реакции является пропускание в реакционную смесь серного ангидрида, связывающего воду по мере ее образования [16а]. Сульфирование ускоряется в присутствии фтористого бора [16в] и фтористого водорода [16г]. Выделить бензолсульфокислоту из реакционной смеси можно путем непрерывной экстракции ее бензолом [166]. [c.11]

    Перегнанная вода свободна только от нелетучих примесей. От летучих ее стараются освободить, добавляя перед перегонкой вещества, реагирующие с этими примесями и дающие с ними нелетучие продукты реакции. Все же и тогда первые порции перегоняемой воды содержат растворенные газы воздуха. В тех случаях, когда их присутствие вредит, эти порции не собирают. [c.135]

    Окрашивание пламени газовой горелки. Платиновую или нихромовую проволоку с петлей (или с крючком) на конце предварительно очищают, погружая ее в разбавленную НС1, затем прокаливая в пламени газовой горелки и охлаждая до комнатной температуры. На кончик подготовленной таким путем платиновой или нихромовой проволоки, смоченной разбавленной НС1 (иногда для тех же целей используют графитовый стержень), помещают несколько крупинок анализируемого вещества и вносят в пламя газовой горелки. Смачивание проволоки хлороводородной кислотой проводят для того, чтобы получить в пламени летучие хлориды катионов, присутствующих в пробе (если она содержит нелетучий или труднолетучий компонент). [c.503]

    По-видимому, полимеризация является обратимой, и летучий мономер отгоняется из равновесной смеси, что в конечном итоге приводит к деполимеризации всего количества нелетучего полимера. Мономерный адипиновый ангидрид устойчив, но реакционноспособен и снова полимеризуется при каталитическом действии следов воды. Принцип превращения полимерных веществ в циклические мономеры путем нагревания в высоком вакууме при температуре, близкой к температуре разложения (если требуется — в присутствии катализатора), был широко использован Карозерсом и Хиллом (1930—1933) для получения макроциклических соединений различных типов. [c.66]

    Если считается, что следует отдать предпочтение ИК-спектроскопии (как это обычно и бывает), по крайней мере для классификации неизвестного вещества, то значительная информация может быть получена еще до съемки спектра. Очевидно, важны его физическое состояние и свойства. Например, вещество будет лучше охарактеризовано в случае бесцветных кристаллов, чем окрашенных смолистых или дегтеобразных масс. Полезную информацию могут дать испытания на вязкость (для жидкостей) и растворимость, приблизительная температура плавления, проверка вещества под микроскопом. Поведение малой пробы при внесении в пламя обычно указьшает, является ли материал органическим или неорганическим и, если верно первое, присутствуют ли в нем ароматические группы. Более совершенная методика исследований в пламенах может выявить присутствие металлоорганического соединения [243]. Для жидкостей или летучих твердых веществ сведения об их чистоте дает газохроматографический анализ. Из-за того что пики могут перекрываться или могут образовываться нелетучие остатки чаще, чем предполагают многие химики, опасно считать, что одиночный пик на хроматограмме указывает на чистый образец. [c.186]

    Образующиеся при упаривании сульфитно-дрожжевой бражки конденсаты соковых паров загрязнены различными веществами. Кроме показанных в табл. 9.1, в них присутствует в незначительном количестве ацетон, этанол, метил- и бутил-формиат, диизопропиловый эфир и др. Объективным показателем загрязненности конденсатов служит величина ХПК, учитывающая не только летучие соединения, но также попадающие в соковые пары при перебросе пены трудноокисляемые нелетучие соединения — лигносульфонаты и продукты биосинтеза. ХПК конденсатов, как видно из рис. 9.3, линейно снижается при повышении pH сульфитно-дрожжевой бражки с 3 до 5. Это обусловлено переводом в солевую форму основной массы уксусной кислоты и уменьшением переброса пены. Минимальной величине ХПК соответствует узкая зона pH 5—5.5. При дальнейшем увеличении pH усиливается переброс пены и ХПК конденсата вновь возрастает. Во всех случаях конденсат от упаривания раствора лигносульфоната аммония наиболее сильно загрязнен. [c.287]

    Выражения (XI.8) и (XI.8а) справедливы в том случае, когда дистиллируемый компонент и присутствующие в смеси другие нелетучие вещества взаимно нерастворимы. Дистилляция в токе водяного пара применима также при неограниченной взаимной растворимости дистиллируемого компонента А и присутствующего в смеси практически нелетучего компонента В. Тогда процесс будет протекать при непрерывном снижении в кубовой жидкости мольной концентрации компонента А, обозначаемой через х, его парциального давления в паровой смеси и рабочей температуры. Соотношение (а) можно написать для элементарного отрезка времени, в течение которого расходуется dWп пара и отгоняется летучего компонента  [c.511]

    Перегонка вещества в присутствии практически нелетучих веществ. Несложными случаями перегонки являются такие, когда в жидкости, подвергаемой перегонке, растворено твердое, нелетучее вещество. Растворенное вещество понижает упругость пара растворителя (при небольших концентрациях растворенного вещества понижение упругости пара пропорционально молекулярной концентрации вещества). Поэтому, чтобы привести в кипение раствор нелетучего твердого вещества в летучей жидкости, необходимо нагревать раствор до более высокой температуры, чем чистую жидкость. [c.69]

    Для определения нелетучих фенолов проводят сначала отгонку с паром летучих фенолов, как описано на стр. 224. Из остатка выделяют органические вещества экстракцией (стр. 174) и фенольную фракцию одним из вариантов метода (стр. 175). После отгонки эфира остаток фенолов взвешивают. Хотя в остатке по способу его выделения могли бы присутствовать и другие растворимые в эфире и нелетучие слабые органические кислоты (р/С 10), это обычно не наблюдается, так как такие кислоты в фенольных сточных водах практически отсутствуют. [c.237]

    Исследование может быть проведено при более высоких температурах, что позволит обнаружить более тяжелые молекулы, присутствующие в смеси, как, например, малое количество поверхностно-активных веществ. Если основной компонент испаряется без разложения, то он тоже исследуется указанным выше методом. Если же основной компонент нелетуч, то попытку идентификации можно продолжить после размола малого количества образца и обработки его различными реактивами (например, каустической содой), способствующими разложению образца на более летучие осколки. Реактивы, присутствующие в исследуемом материале, идентифицируются в широкой области концентраций без предварительного разделения этого материала. Нижний предел чувствительности обнаружения летучего компонента, содержащегося в размолотом образце весом в 10 г, ниже 1 10" % образца весом в 1 мг, т. е. 1 Ю % от приведенного выше количества, достаточно для загрузки системы напуска малого объема. Для обнаружения летучих примесей в меньших пределах концентраций с большим успехом применяются методы, описанные в следующем разделе. [c.187]

    Для определения общего содержания фенолов (летучих с паром и нелетучих) рекомендуется выделение органических веществ по общей схеме, представленной на стр. 199, разделение их на группы по этой схеме и взвешивание группы фенольных соединений. Коэффициенты распределения фенолов (особенно летучих) между диэтиловым эфиром и водой настолько велики, что никакого предварительного концентрирования пробы обычно не требуется, в крайнем случае можно упарить пробу после подщелачивания ее едкой щелочью. Однако в присутствии формальдегида следует поступать, как указано на стр. 265. [c.256]

    Если проводились определения общего содержания всех фенолов (разд. 69,1) и общего содержания летучих фенолов (разд. 69.2.2) гравиметрическими методами, то общее содержание нелетучих фенолов находят по разности между этими значениями. Можно также определить содержание нелетучих фенолов непосредственно, извлекая их нз остатка после отгонки летучих фенолов эфиром и продолжая, как при определении общего содержания всех фенолов. Хотя в остатке после удаления эфира могли бы быть и другие кислотные соединения, обладающие слабыми кислотными свойствами [рК 10), однако аминокислоты, рК которых имеет указанные значения, не извлекаются эфиром, а другие вещества этого типа настолько редки, что с их присутствием приходится считаться лишь в исключительных случаях. [c.271]

    Остаток в перегонной колбе подщелачивают раствором едкого натра и снова отгоняют с паром. Перешедшие в дистиллят летучие органические основания можно высолить карбонатом калия и экстрагировать эфиром или же определить соответствующим титрованием, зависящим от типа присутствующих оснований. Остаток в перегонной колбе, который содержит теперь только нелетучие вещества, обрабатывают, как описано в разделе А (см. схему, стр. 161). [c.162]

    Итак, если соли МХ и НУ после взаимодействия образовали отчасти соли МУ и НХ, то наступает равновесие и взаимодействие прекращается но если одно из происходящих тел, по своим физическим свойствам, выйдет из круга действия остальных веществ, то взаимодействие будет продолжаться, потому что отношение масс изменяется. Этот выход из круга действия зависит от физических свойств происходящих тел и от обстоятельств, в которых совершается взаимодействие. Так, иапр., при взаимодействии в растворах, соль НХ может выделяться в виде осадка, как вещество нерастворимое, когда другие три тела остаются в растворе. Оно может превратиться в пар и этим способом также удалиться из круга действия остальных веществ. Предположим теперь, что оно каким-либо образом выделилось из круга действия остальных веществ, тогда наступает вновь взаимодействие, или образование соли НХ и т. д. Так, вследствие физического свойства образующегося тела реакция может дойти до конца при всей незначительности притяжения, существующего между элементами, входящими в состав образовавшегося вещества НХ. Конечно, если оно составлено при этом из элементов, имеющих значительную меру сродства, то окончательное разложение значительно облегчается. Такое представление о ходе химических превращений чрезвычайно ясно прилагается к множеству реакций, исследованных химией, и, что особенно важно, приложение этой стороны учения Бертолле вовсе не требует определения меры сродства, действующего между присутствующими веществами. Напр., действие аммиака на растворы солей, вытеснение, посредством его, основных гидратов, в воде нерастворимых, выделение летучей азотной кислоты с помощью нелетучей [c.314]

    В начале 1960-х годов в литературе появились работы, в которых газохроматографическому анализу подвергались не исследуемые жидкие или твердые объекты, а газовая фаза над ними. Этот простой прием применялся при исследовании состава летучих соединений, выделяющихся из пищевых продуктов, для контроля содержания вредных веществ в воде, полимерных и биологических материалах. Дозирование в хроматограф газа вместо жидкости или твердого тела значительно расширяет возможности газовой хроматографии, так как позволяет определять летучие компоненты в объектах, прямой ввод которых в прибор невозможен или нецелесообразен по причине недостаточной чувствительности детекторов, присутствия легко разлагающихся компонентов, загрязнения колонки нелетучим остатком или нарушения существующего в системе химического равновесия. Такой способ определения летучих веществ в английской литературе получил название Head-Spa e Analysis, а в русской — сначала анализ равновесного пара , а затем парофазный анализ (ПФА). [c.232]

    Органические кислоты. Большая часть органических кислот свеклы, образующих с гидроокисью кальция нерастворимые соли (щавелевая, лимонная, оксилимонная и винная), удаляется из диффузионного сока на дефекации. В мелассу переходят в основном кислоты, не осаждаемые известью,— глутаровая, малоновая, адипиновая, янтарная, трикарбаллиловая, аконитовая, гликолевая, молочная, глиоксиловая и яблочная. Из нелетучих жирных кислот обнаружены следы капроновой, каприловой, каприновой, лаурино-вой, миристиновой и пальмитиновой. Из летучих кислот присутствуют муравьиная (0,1 —1,2%), уксусная (0,6—1,3%), пропионовая (0,02—0,3%), н-масляная (до 0,6%), н-валериановая (до 0,2%) и следы около 20 кислот ароматического ряда. Уксусная кислота образуется при щелочном разложении пектиновых веществ и моносахаридов на дефекации, но большая часть ее, как и других летучих кислот и молочной кислоты, появляется в результате жизнедеятельности микроорганизмов. Практически все летучие и нелетучие кислоты находятся в мелассе в виде солей калия и кальция. [c.24]

    Когда содерлшмое куба становится свободным от загрузки, пары вытесняющей жидкости постепенно все больше и больше заполняют колонку, пока они не появятся в достаточно чистом виде в головке колонки. В течение этого времени колонка продолжает отделять последний компонент загрузки, пока это разрешает уменьшающаяся эффективная длина колонки. Если задержка состоит из одного компонента исходной загрузки, а вытесняющая жидкость кипит значительно выше, то разделение бывает вполне четким. Если же задержка колонки состоит из двух или большего числа компонентов, степень разделения становится пропорционально меньшей по мере того, как уменьшается эффективная длина колонки, в которой еще содержатся эти компоненты. Если известно, что в загрузке присутствует нелетучий остаток, то можно применить вытесняющую жидкость для того, чтобы собрать все летучие вещества, находящиеся в загрузке, в головку колонки при условиях, только что отмеченных выше. Нелетучий остаток тогда остается растворенным в вытесняющей жидкости, если он вообще в ней растворим. Если остаток такого рода должен быть подвергнут дальнейшему изучению, необходимо выбирать вытесняющую жидкость такой, чтобы ее можно было отделить от остатка загрузки. [c.255]

    Методы для изучения коллигативных свойств раствора описаны подробно Боннаром, Димбатом и Строссом 4]. За исключением криоскопии, эти методы мало используются для определения констант устойчивости. По-видимому, осмометрия не применялась для определения константы равновесия, в то время как эбуллиоскопия и измерение давления пара раствора, содержащего нелетучее растворенное вещество, использовались для измерения числа присутствующих растворенных частиц. Измерение давления пара чаще применяется для систем, в которых одна из растворенных форм является летучим веществом. Тогда концентрацию летучего растворенного вещества можно определить измерением его парциального давления. [c.309]

    При определении примесей в качестве одной из фаз целесообразно использовать основное вещество. Равновесие пар—жидкость уже давно используется для этих целей. Отбор равновесной пробы из паровой фазы позволяет, во-первых, резко уменьшить концентрацию основного компонента, а также освободиться от присутствия нелетучих компонентов. Чувствительность определения на несколько порядков можно увеличить либо используя прямой газохроматографический метод анализа, либо проводя дополнительное концентрирование из паровой фазы [19]. Превосходный обзор по определению летучих примесей из паровой фазы, находящейся в равновесии с жидкой, опубликован Витенбер-гом с сотрудниками [20]. Следует только добавить, что возможности метода могут быть расширены и надежность его увеличена, если проводить не один анализ равновесной паровой фазы, а два или [c.106]

    Смолообразующие плавкие составные части угля, обусловливающие его коксуемость, подвергаются, вероятно, реакциям конденсации с выделением хлористого водорода или воды при температурах ниже тех, при которых происходит выделение из них летучих веществ и плавление в результате этих реакций образуются нелетучие и неплавкие продукты. Например, Бараш [22] показал, что смесь хорошо коксующегося и хлорированного углей не обладает способностью коксоваться, несмотря на присутствие в необработанных углях спекающих веществ. Выделение хлористого водорода начинается около 200° и продолжается равномерно до 500—600°. При этой температуре выделение практически прекращается с удалением главной части хлора в виде хлористого водорода Однако гл бже хлорированные углп с высоким содержанием пирита продолжали выделять значительные количества хлористого водорода вплоть до 900°. Если из табл. 5 исключить уголь №3 [c.385]

    Органические вещества при действии воздуха могут так окисляться, ЧТО весь углерод и весь водород, в них заключающиеся, превратятся в углекислый газ и воду. Такому изменению подвергаются остатки растений и животных, когда медленно гниют и тлеют или быстро горят при пряном доступе вовдтеа. Но если доступ воздуха ограничен, то тогда полного превращения в №0, СО и другие летучие вещества (богатые водородом) быть не может, и должен оставаться уголь, как вещество нелетучее. Все животные и растительные вещества непрочны, изменяются прн обыкновенной температуре, в особенности в присутствии воды поэтому становится понятным, что чрез изменение веществ, входящих в состав организмов, может во многих случаях получаться уголь, хотя и нечистый. Но из органического вещества не выделяется только вода и углекислый газ углерод, водород и кислород могут давать множество разнообразных соединений некоторые из втих соединений летучи, газообразны, растворимы в воде они и уносятся иэ органического вещества, изменяющегося без доступа воздуха. Другие, напротив того, нелетучи, богаты углеродом и постоянны под влиянием различных деятелей природы. Эти последние остаются на месте разложения и составляют подмесь к углю такова, напр., подмесь смолистых веществ. Смотря по тому, сколь продолжительно и сколь энергично было разлагающее влияние, количество тех веществ, которые находятся в подмеси к углю, будет весьма различно. Приводимая здесь в виде примера таблица показывает, по данным Виолетта, те изменения, которым подвергается дерево при разных температурах, будучи подвержено сухой перегонке посредством перегретого водяного пара  [c.545]

    Однако применение этого метода, по мнению Е. Л. Быковой, не исключает возможность гидролиза сложных органических веществ, присутствующих в воде. В целях его избежания она применила к подземным водам т. п. прямой метод определения растворимых летучих и нелетучих органических кислот. Это метод Дилалло и Альбертсона [232], основанный на том, что 80% общего содержания растворенных органических кислот титруется в интервале значений pH от 4 до 7. Карбонаты, присутствующие в пробе воды, предварительно разрушают. Сопоставление данных, полученных методом отгонки с водяным паром и прямым методом, позволяет судить о характере органических кислот. Для этого Е. Л. Быкова предложила вычислять отношение количества органических кислот, установленного методом перегонки с водяным паром, и количества кислот, определенного прямым методом. Если это отношение меньше единицы, то следует считать, что летучие органические кислоты составляют какую-то долю в сумме всех растворенных органических кислот. Если же это отношение более единицы, то можно предполагать, что органическое вещество способно расщепляться до кислот [87]. [c.56]

    Разрушение органического вещества сплавлением со щелочными реагентами в микробомбе, так называемое сплавление в бомбе , часуо используется аналитиками. Этот метод почти незаменим для прямого определения кремния и германия в некоторых кремний- и германий-органических соединениях. Для разрушения этих соединений предложено также мокрое окисление окислительными смесями или сожжение в токе кислорода. Однако эти способы неприменимы для определения указанных элементов, если в веществе присутствует фтор, а мокрое окисление неприменимо, если вещества летуче. Определение сожжением в токе кислорода не может быть применено и при наличии в веществе других элементов, образующих при сожжении нелетучие окислы. [c.119]

    В составе ВРОВ наибольший интерес для нефтепоисковых целей представляют битуминозные вещества, летучие и нелетучие фенолы и бензол. Битуминозные вещества составляют небольшую часть ВРОВ Схб обычно не превышает 10% от Сорг- В водах девонских каменноугольных отложений концентрация Схб составляет в среднем 1,5 мг/л. Нелетучие фенолы присутствуют в битуминозной части ОВ почти всех изученных пластовых вод, отобранных из продуктивных частей разреза. Содержание их в приконтурных водах отдельных месторождений нефти достигает 2,7—3 мг/л, фоновая концентрация не превышает 0,1 мг/л. Летучие фенолы присутствуют во всех пластовых водах, среднее содержание их закономерно увеличивается на юг и юго-восток. Фоновые значения — 0,3 мг/л для терригенных отложений девона, нижнего карбона и верейского горизонта Верхнекамской впадины, Татарского свода, 0,4 мг/л для Пермско-Башкирского свода и 0,5—0,6 мг/л для южного Урало-Поволжья. [c.156]

    На рис. 17 приведена принцннимьная технологическая схема рециркуляции газов гниения. Испарения с иловых карг (метан, аммиак, сероводород и сопутствуюшие ему летучие органические сульфиды -метантиол, диметилсульфид и сероуглерод) и газы деструкции направляют на сорбирование в аэротенки вместе с кислородом воздуха. При этом загрязнения, присутствующие в испарениях в следовых количествах, будут окисляться микроорганизмами ак-гивного ила до нелетучих веществ, а газы, очищаясь и дезодорируясь в аэротеиках, не будут иметь неприятного запаха, вызывающего дискомфорт в близлежащих от БОС населенных пунк ах. [c.32]

    Спектроскопист не должен забывать о возможной разнице в степени летучести компонентов образца. Например, в некоторых случаях один или несколько компонентов могут испариться и полностью выгореть за время около 0,6 мин после зажигания дуги в то время как другие еще не успеют разогреться до такой степени, чтобы появиться в дуге. Это может быть большим неудобством, особенно при анализе следов элементов, поскольку при фотографировании образец может потерять некоторые компоненты еще до заврршения полной экспозиции. В некоторых случаях можно использовать различную степень летучести веществ для того, чтобы записать спектры компонентов образцов с определенной летучестью без помех со стороны других менее летучих компонентов. Примером такого анализа является определение примеси окиси лития, алюминия и других окисей в окиси урана [20] уран дает очень богатый линиями спектр, что сильно затрудняет определение в нем примесей. В данном методе уран сначала переводят в нелетучее соединение UaOg и гатем добавляют к нему 2% ОазОз, являющейся умеренно летучей окисью. Окись галлия играет роль носителя она быстро вводит в пламя дуги все примеси. Этот метод имеет высокую чувствительность и точность и пригоден для определения примесей, присутствующих в образце в количестве нескольких частей на миллион. [c.101]

    Аналитические методы определения летучих примесей сравнительно хорошо разработаны многими исследователями [3]. Основной причиной этого является относительная легкость, с которой летучие органические вещества отделяются от водной среды, например, с помощью жидкостной экстракции или при продувании газом [4]. Концентрирование и отделение нелетучих органических примесей, присутствующих в микрограммо-вых количествах в виде сложных смесей в водных растворах, более трудоемко и сложно. Для концентрирования нелетучих органических веществ в водных пробах используют адсорбцию [5], вымораживание [6], обратный осмос [7], вакуумную дистилляцию [8]. Жидкостная хроматография является основным методом анализа нелетучих органических веществ [3, 4, 8] вследствие успешного разделения сложных смесей этим методом. [c.128]

    UF4 представляет собой нелетучее твердое вещество, нерастворимое в воде, но легко растворимое в присутствии окислителей. Гексафторид UFg получается при действии фтора на низшие фториды он образует бесцветные кристаллы с т. пл. 64,1" и давлением паров 115 мм рт. ст. при 25". Это единственное легкодоступное летучее соединение урана его физические свойства хорошо изучены, так как разделение изотопов урана с целью получения чистого ядерного горючего проводили методом термодиффузии UFg в газовой фазе. Установлено, что в газовой фазе он имеет октаэдрическую структуру, а в кристаллическом состоянии октаэдры подвергаются небольшому тетрагональному искажению. UFg является сильным фторирующим агентом, способным фторировать многие соединения, например Sj в SF4, (СГз)25з и т. д. [21]. Гексафторид урана легко гидролизуется водой. Промежуточные фториды UF5, U2F9 и U4F14 образуются при взаимодействии UFg и UF4, которые легко диспро-порционируют, например [c.552]

    Для определения нелетучих и малолетучих веществ в природных и сточных водах часто используют методы реакционной газовой хроматографии, позволяющие переводить ана.тизируемые вещества в более летучие производные, удобные для газохроматографического анализа. Некоторые примеры прн.менения реак-тюниои газовой хроматографии приведены выше. Эти методы позволяют, в частности, определять содержанпе некоторых солей [320], однако они пока не Г10лу-чили широкого распространения и еще не могут конкурировать с классическими методами анализа солевого состава. Реакционную газовую хроматографию при-л еняют также для определения поверхностно-активных веществ (детергентов), котооые часто присутствуют в сточных водах в больших количествах [321 ]. [c.147]

    Иногда сырой древесный уксус после удаления смолы и отгонки древесного спирта перерабатывается в метиловый эфир уксусной кислоты (метилацетат), для чего к древесному уксусу прибавляется чистый метиловый спирт и серная кислота. При этом образуются сточные воды, температура которых достигает 90° С, а их количество на крупном заводе с производительностью около 150 т древесины в сутки составляет 3—4 ч. Эти воды совершенно мутные, имеют темно-бурый цвет, обладают характерным запахом жженной смолы и при охлаждении выделяют твердую смолистую массу. Воды имеют сильно кислую реакцию (pH менее 1) и содержат большое количество растворенных примесей (свыше 65 г/л в пересчете на сухое вещество), среди которых преобладают свободная серная кислота и свободные органические кислоты (всего около 4,1% уксусной кислоты). Перманганатная окисляемость превышает 140 г л, биохимическая потребность кислорода превышает 10 г/л. В противоположность этому содержание летучих и нелетучих фенолов, равное соответственно 88 и 277 мг1л, играет второстепенную роль. Присутствием фенолов объясняется окраска воды. Содержание азотистых соединений, главным образом органических, составляет примерно 100 мг/л. [c.384]

    При переработке сырого древесного уксуса в этилацетат в присутствии этилового спирта и серной кислоты образуются очень близкие по составу горячие кислые сточные воды, количество которых на небольшом заводе составило около 30 м /сутки. После охлаждения и обессмоливания эти воды становятся очень мутными, окрашены в темно-желтый цвет, обладают слабым запахом смолы, имеют кислую реакцию (pH = 3,2) и содержат почти 10 г/л растворенных веществ. К числу последних в первую очередь относятся свободные органические кислоты (около 0,7% в пересчете на уксусную кислоту), далее — летучие и нелетучие фенолы (соответственно 544 и 666 лг/л), обусловливающие цвет, занах и перманганатную окисляемость воды, равную 1 г/л. Концентрация азотистых соединений (не содержащих серы) в данном случае незначительна (ниже 25 мг/л). [c.384]


Смотреть страницы где упоминается термин Летучие вещества в присутствии нелетучих: [c.192]    [c.1017]    [c.310]    [c.543]    [c.252]    [c.305]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]





ПОИСК





Смотрите так же термины и статьи:

Вещество нелетучее



© 2020 chem21.info Реклама на сайте