Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядро магнитные свойства

    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]


    Водород существует в двух формах орто-, в которой ядра имеют параллельные спнны, и пара-, где спины антипараллельны. При температуре, близкой к абсолютному нулю, молекулы нахо-, дитси главным образом в геара-форме, в состоянии наиболее низкого энергетическогро уровня. При комнатной температуре около 75% водорода существует в орто-форме. (Две формы отличаются друг от друга различными физическими свойствами.) Так как ядерный спин исчезает в пара-форме водорода, эта форма не проявляет магнитных свойств газа. Парамагнитные соединении (например, Ог, редкоземельные элементы и радикалы) способствуют конверсии. Механизм конверсии, катализируемой атомами водорода, можно представить в виде [c.142]

    Значения /, у , gn определяются природой ядра и представляют табулируемые константы. Магнитные свойства ядер некоторых изотопов приведены в табл. 1.1. [c.8]

    Магнитные свойства ферромагнитных материалов определяются магнитными свойствами многоэлектронного атома. Однако далеко не все материалы с многоэлектронными атомами обладают ферромагнитными свойствами. Строение атомов ферромагнитных материалов имеет ряд особенностей. Атом состоит из положительно заряженного ядра, вокруг которого вращаются электроны, образующие электронные слои и оболочки. Число электронных слоев определяют главным квантовым числом, которое принимает целые значения 1, 2, 3,. .., п. Число оболочек в слое выражают орбитальным квантовым числом I и обозначают их буквами 8, р, <1, f,. ... На рис. 1.16 показана планетарная модель атома железа, из которого видно, что в атоме содержится четыре электронных слоя. В первом слое находится одна электронная оболочка 18 с двумя электронами во втором слое содержатся оболочки 28 с двумя электронами, 2р с шестью электронами в третьем слое - оболочка Зз с двумя электронами, оболочка Зр с шестью электронами и оболочка 3(1 с шестью [c.238]

    Современная молекулярная теория объясняет, почему вещества обладают магнитными свойствами. Вращающийся вокруг ядра атома электрон можно рассматривать как замкнутый [c.139]

    Рассмотрим в качестве примера атом, обладающий одним неспаренным электроном. Предположим, что ядро этого атома не обладает магнитным моментом. Магнитные свойства такого атома связаны с наличием неспаренного электрона и имеют двоякую природу. Они связаны как с орбитальным движением электрона, так и с наличием у него нескомпенсированного спинового магнитного момента. Движущийся по орбите электрон можно рассматривать как круговой ток, обладающий магнитным моментом  [c.224]

    Следует отметить, что метод ЭПР дает возможность изучения кинетики радикальной полимеризации и радикалов, образовавшихся в результате тех или иных воздействий. ЭПР является основным средством изучения полимеров, обладающих полупроводниковыми и магнитными свойствами. ЯКР имеет ограниченную применимость для полимеров, так как в них редко встречаются ядра, обладающие электрическим квадрупольным моментом. Однако введение в полимеры кристаллических порошков, содержащих такие ядра, дает возможность оценивать их внутренние напряжения. [c.230]


    ЯМР-спектроскопия дает возможность изучать молекулы, содержаш,ие атомы, ядра которых обладают магнитными свойствами. Прежде всего, это атомы водорода, которые входят в состав большинства химических соединений, особенно органических. [c.8]

    Ядерная химия играет очень важную роль в аналитических применениях и при идентификации различных частиц. В какой-то мере с этим связана и спектроскопия ядерного магнитного резонанса (ЯМР-спектроскопия). Мы не собираемся здесь рассматривать довольно сложную экспериментальную технику этого метода, а остановимся лишь на его принципах. Они основаны на том, что атомное ядро обладает магнитными свойствами, зависящими от его состава и окружения в молекуле. Ограничимся простейшим атомом— водородом — и покажем, как можно отличить атомы водорода в метане СН4 от атомов водорода в бензоле С Н , пользуясь методом ЯМР-спектроскопии. [c.429]

    Все три изотопа водорода ( Н, fH и H) имеют ядра, обла-даюш,ие магнитными свойствами, у ядер других изотопов магнитных свойств может и не быть. К ним относятся, например, ядра углерода С и кислорода аО. Отсутствие магнетизма у этих ядер не является недостатком ЯМР-спектроскопии, а. наоборот, ее преимуществом. Если бы основные изотопы названных элементов имели ядра с магнитными свойствами, многие спектры органических молекул, содержащих углерод и кислород, были бы сложнее, чем это наблюдается в действительности. Для исследования методом ЯМР именно ядер углерода можно воспользоваться другим изотопом этого элемента — бС, ядра которого обладают магнитными свойствами и, несмотря на низкое естественное содержание (около I %), дают возможность получить спектр ЯМР. Имеют первостепенное значение в ЯМР-спектроскопии также ядра 7N, 7N, gF, бР и других элементов. [c.8]

    Таким образом, если поместить атомное ядро некоторого изотопа, обладающего магнитными свойствами, в сильное магнитное поле, то оно приобретает способность поглощать или излучать радиоволны, частота которых у каждого изотопа имеет характерное для него значение. [c.16]

    Второй ступенью в развитии исследований магнитного эффекта по отношению к химическим процессам было открытие воздействия на них не только внешнего магнитного поля, но и внутреннего, создаваемого ядрами реагирующих частиц в тех случаях, когда эти ядра обладают магнитным моментом. Это новое явление было названо магнитным изотопным эффектом. В отличие от классического изотопного эффекта, зависящего от масс изотопных ядер, новый эффект зависит от магнитных свойств ядер. Величина его может в десятки и сотни раз превосходить величину классического эффекта. На основе этого эффекта был разработан новый способ фракционирования изотопов, который наряду с практической задачей разделения изотопных смесей позволяет решать задачи, относящиеся к химической эволюции вещества в геологических и космогонических масштабах путем анализа изотопного состава вещества и сравнения его с расчетным составом, вычисленным по магнитному изотопному эффекту. [c.164]

    При рассмотрении физических свойств и характера их изменения в периодической системе следует различать атомные свойства (свойства элементов) и свойства простых веществ (гомоатомных соединений). Кроме того, физические свойства простых веществ могут характеризовать обе формы химической организации вещества (молекула и кристалл) или только одну из них. Очевидно, такие свойства, как температура плавления и кипения, твердость и вязкость, электрическая проводимость и т. п., относятся только к конденсированному состоянию вещества. С другой стороны, например, магнитные свойства (диа- или парамагнетизм) характерны как для кристаллов, так и для молекул. Элементы (изолированные атомы) характеризуются сравнительно небольшим набором ([)пзи-ческих свойств заряд ядра, атомная масса, орбитальный радиус, потенциал ионизации, сродство к электрону. [c.32]

    Магнитные свойства. Магнитный момент атомов Не равен магнитному моменту их атомного ядра и составляет 0,7618 1о1> — магнитный момент протона. Магнитный момент ядра Не в отличие от момента протона отрицателен. Он является наибольшим по абсолютной величине отрицательным магнитным моментом атомного ядра. Сведения о магнитных свойствах Не важны для выяснения причин аномалий, наблюдаемых при низких температурах. [c.255]

    На связывающей МО электрон большую часть времени пребывает между ядрами (повышается электронная плотность), способствуя их химическому связыванию. На разрыхляющей же МО электрон большую часть времени находится за ядрами, вызывая отталкивание ядер друг от друга. Характер распределения электронов по МО определяет порядок (кратность) связи, ее энергию, межъядерные расстояния [длина связи), магнитные свойства молекул и др. [c.134]

    Физические основы спектроскопии ядерного магнитного резонанса определяются магнитными свойствами атомных ядер. Взаимодействие магнитного момента ядра с внешним магнитным полем Во приводит в соответствии с правилами квантовой механики к диаграмме ядерных энергетических уровней, так как магнитная энергия ядра может принимать лишь некоторые дискретные значения Я,- — так называемые собственные значения. Этим собственным значениям энергии соответствуют собственные состояния — те состояния, в которых только и может находиться элементарная частица. Они также называются ста-ционарными состояниями. С помощью высокочастотного генератора можно вызвать переходы между собственными состояниями на диаграмме энергетических уровней. Поглощение энергии можно обнаружить, усилить и записать как спектральную линию, или так называемый резонансный сигнал (рис. 1). [c.10]


    В основе спектроскопии ядерного магнитного резонанса лежат магнитные свойства атомного ядра. Из ядерной физики мы знаем, что некоторые ядра, в том числе и протон, обладают угловым моментом Р, который в свою очередь обусловливает появление у этого ядра магнитного момента л. Обе величины связаны соотношением [c.17]

    При создании очень однородного внешнего магнитного поля получают спектры высокого разрешения. Так, для этанола высокое разрешение вскрывает тонкую структуру пиков поглошения (рис 88, сплошные линип). Появление тонкой структуры является резуль татом так называемого спин-спинового расщепления. Атомные ядра взаимодействуют через свои электронные оболочки. Спины атомных ядер стремятся определенным образом ориентировать спины окружающих их электронов, т. е., в свою очередь,— сппны электронов соседних атомов, а через эти электроны ориентации передаются на соседние ядра и т. д. Для этанола пик поглощения протона гидроксильной группы расщеплен на три узких максимума вследствие взаимодействия с протонами метиловой и метиленовой групп. Тонкая структура спектров ЯМР тесно связана с числом и магнитными свойствами ближайших соседей относительно исследуемого ядра. Поэтому анализ тонкой структуры спектров ЯМР существенно рас цшряет и уточняет информацию, полученную от измерения химиче ских сдвигов. [c.189]

    Спектроскопия ЯМР начала развиваться одновременно со спектроскопией протонного магнитного резонанса, а поскольку магнитные свойства ядер и Н близки, экспериментальные методы их наблюдения также различаются мало. Метод же ЯМР С лишь совсем недавно стал рутинным, и его значение для органической химии продолжает возрастать. Это различие в ходе развития методов объясняется тем, что магнитные свойства ядра С значительно менее благоприятны для экспериментов по ЯМР, чем свойства протона. Сравнительные данные приведены в табл. X. 1. [c.372]

    Парамагнетизм является результатом ориентации постоянных магнитных диполей в образце. Постоянные магнитные диполи обусловлены или спинами неспаренных электронов, или угловыми моментами электронов на атомных или молекулярных орбиталях. Электроны на орбиталях с /= 1, 2, 3. .. имеют угловой момент и поэтому обладают магнитным моментом. Ядра с магнитными моментами также характеризуются парамагнитными свойствами. Однако ядерный парамагнетизм составляет только одну миллионную долю парамагнетизма, обусловленного орбитальными моментами или спинами неспаренных электронов. Магнитные свойства ядер исследуют методом ядерного магнитного резонанса. [c.496]

    Ядро фтора обладает такими же магнитными свойствами, как протон. Оно дает ЯМР-спектр, хотя и совершенно при другой комбинации частота — напряженность поля, чем протон. Ядра фтора могут взаимодействовать не только друг с другом, но так- [c.422]

    Магнитные свойства некоторых ядер Немагнитные ядра (спин 1 = 0) С, 0, = 51, Ре [c.10]

    Электронное окружение атомов в молекулах в результате образования химических связей становится асимметричным. Это приводит к важным следствиям в отношении магнитных свойств вещества. Если в атоме электроны можно рассматривать как чисто диамагнитную систему, то в молекулах при наложении внешнего магнитного поля возникает слабый орбитальный парамагнетизм. Этот парамагнетизм эквивалентен дополнительному парамагнитному току электронов. Таким образом, константу экранирования ядра можно представить в виде суммы вкладов двух токов  [c.63]

    Магнитными свойствами обладают ядра, в которых сумма протонов и нейтронов выражается нечетным числом. Поскольку ядра имеют заряд, то при их вращении возникает магнитное поле. Такие ядра можно рассматривать как маленькие магнитики с магнитным моментом и. В настоящее время применяется спектроскопия ЯМР на ядрах Н, V, С, Р, спиновое число которых равно /2. Наиболее изучена спектроскопия ЯМР на протонах Н, называемая протонным магнитным резонансом (ПМР). [c.506]

    Метод ЯМР основан на взаимодействии магнитной компоненты электромагнитного поля с магнитными моментами атомных ядер. Установлено, что некоторые (но не все ) атомные ядра обладают собственным моментом количества движения (спином). В макромире механической моделью ядра можно считать вращающийся шарик, который имеет положительный заряд, распределенный по объему или по поверхности. Его вращение вызовет круговой электрический ток, и, как следствие,-магнитное поле, направленное вдоль оси вращения. Эта простейшая механическая модель позволяет понять, почему все ядра, имеющие спин, обладают магнитными свойствами, которые количественно характеризуются м нитным моментом ядра. Магнитный момент ядра ц и его спин являются коллинеарными векторами в пространстве длины двух векторов связаны соотношением [c.277]

    Гиромагнитное отношение является одной из характеристик магнитных свойств ядра. В макромире наиболее близким аналогом ему была бы намагниченность твердого тела, например магнитной стрелки компаса. [c.277]

    Каждое ядро может иметь (2/ + 1) значений т. /-спиновое квантовое число-еще одна важнейшая характеристика магнитных свойств данного яд а. Если от гиромагнитного отношения зависит длина вектора ц (см. рис. 5.1), то спиновое квантовое число I определяет общее число его возможных направлений ориентации (рис. 5.2). [c.278]

    Магнитный момент неспаренного электрона обусловлен вращением электрона вокруг ядра орбитальный магнетизм) и собственным вращением электрона [спиновый магнетизм). В тех веществах, магнитные свойства которых будут рассматриваться в этой главе, оеновную роль играет свиновый магнетизм. [c.301]

    С орбитальным движением электронов вокруг ядра связано возникновение орбитальных магнитных моментов. Возникают также магнитные моменты от прецессионного движения орбит электронов. Численное выражение этих двух видов магнитных моментов оказывается незначительным и не влияет на магнитные свойства ферромагнитных материалов. [c.240]

    Каждый электрон в структуре вещества можно рассматривать в качестве элементарного магнита. Магнитный момент электрона возникает как следствие его вращения вокруг своей оси, а также вокруг ядра атома. Первую составляющую определяют как спиновый магнитный момент она связана со спиновым квантовым числом электрона. Вторую составляющую называют орбитальным магнитным моментом. Ее величина зависит от орбитального и магнитного квантовых чисел данного электрона. Магнитные моменты многоэлектронных атомов, молекул или ионов представляют собой векторную сумму магнитных моментов всех входящих в их состав электронов. Для оценки магнитных свойств вещества несбходимо просуммировать магнитные моменты всех образующих его атомов, молекул или ионов с внесением поправки на их взаимодействия. В газах взаимное влияние молекул незначительно и мало сказывается на магнитных свойствах вещества в целом. В то же время в жидкостях и особенно в твердых телах взаимодействие частиц может привести к существенным изменениям магнитных характеристик системы. [c.300]

    Полинг предполагает, что образование связей в переходных металлах обусловлено электронами в с1-, з- и ]0-состояниях, а не только электронами в -состоянии. Одни лишь -орбитали недостаточны для образования связи, и только гибридизация между й-, 5- и р-ор-биталями может привести к очень стабильным гибридным орбиталям. С этой точки зрения в IV периоде для образования связи пригодны одна 45-, три 4р- и пять 3 /-орбиталей и при полном их использовании связь может осуществляться девятью орбиталями. Если бы для связи использовались все девять возможных орбита-лей, то при переходе от К к Си следовало бы ожидать непрерывного увеличения прочности связи. Однако максимум прочности решетки достигается у хрома, а далее прочность уменьшается по направлению к никелю. Это привело Полинга к предположению, что только некоторые -орбитали пригодны для образования металлической связи, С учеюм магнитных свойств принимается, что для образования металлической связи из пяти -орбиталей пригодны только 2,56. Остальные 2,44 -орбитали являются атомными орбиталями. Электроны на атомных -орбиталях связаны с ядром атома и не участвуют в образовании металлической связи. Электроны связывающих -орбиталей полностью отделены от атома и коллективизированы в системе электронов кристалла. В свою очередь, атомные -орбитали, содержащие электроны с неспаренными спинами, обусловливают магнитные свойства металлов. Таким образом, Полинг различает связывающие -электроны, которые участвуют в ковалентных связях между соседними атомами кристалла и обеспечивают силы сцепления в металле и атомные -электроны, ответственные за парамагнетизм. Связывающие электроны описываются гибридными 5р-функциями, атомные же — просто -функциями. [c.148]

    Рассмотрим в качестве примера атом, обладающий одним неспаренным электроном. Предположим, что ядро этого атома не обладает магнитным моментом. Магнитные свойства такого атома связаны с наличием неспареиного электрона и имеют двоякую природу. Они сеязаны как с орбитальным движением электрона, так [c.7]

    Величина этой энергии (Д ) и соответствующая ей частота зависят от магнитных свойств ядра ( .if — магнитный ядериый момент, I — ядерный спин). А пропорциональна внепжсму магнитному полю Но  [c.137]

    Высокая стабильность карбенов ряда 1,2,4-триазола стимулировала интерес к соединениям с двумя карбеннесущими ядрами. Особо следует отметить, что такие структуры могут содержать формально конъюгированную систему между карбеновыми центрами. Интерес к ним стимулируется, в частности, тем, что полимерные структуры на их основе могут проявлять повышенную поляризуемость, проводимость, магнитные свойства и т.п. Известно, что гетероциклическим соединениям характерна анизотропия проводимости электронных эффектов [29], поэтому представляет интерес изучение таких эффектов, например, в случае 1,1 -, 3,3 -, 4,4 -положения триазолинилиденовых гетероядер. [c.285]

    Привлекательная особенность ЯМР-спектроскопии состоит в том, что исследуемая молекула в целом прозрачна это позволяет беспрепятственно исследовать выбранный простой класс ядер, обладающих магнитными свойствами. Область протонного резонанса не будет содержать пиков, обусловленных какими-либо другими атомами в молекуле, так как, даже когда эти атомы магнитны, их линии поглощения смещены на расстояния, огромные по сравнению с диапазоном спектра протонного резонанса. Атомы углерода и кислорода, образующие скелет молекулы, вообще не дают самостоятельного эффекта. Присутствие других магнитных ядер (например, азота, фтора, фосфора, дейтерия) иногда сказывается на спектрах протонного резонанса, но только в виде нарушения положений пиков нли их множественности, но эти эффекты, как правило, носят предсказуемый Зсарактер. Ядра других галогенов (хлора, брома и иоДа), хотя и обладают магнитными свойствами, не оказывают влияния на множественность пиков протонного резонанса, так как электрическое поле, обусловленное ядерным квадрупольным моментом, взаимодействует с окружающими полями и изменяет ориентацию ядерного спина настолько быстро, что суммарный эффект его действия на соседние протоны сводится к нулю. Таким образом, ЯМР-спектроскопию чаще всего применяют в органической химии в тех случаях, когда требуются данные о числе водородных атомов различных типов в молекуле, а также об их взаимодействии между собой и с другими атомами, входящими в состав молекулы. Как и следовало ожидать, самые простые спектры обычно дают соединения с небольшим числом типов водородных атомов. Большие молекулы, обладающие низкой симметрией, как правило, дaюt довольно сложные спектры, но даже в этом случае удается получить ценные данные, не проводя полного анализа спектра ЯМР и не идентифицируя все пики. [c.257]

    В результате непрямого спин-спинового взаимодействия сигналы в спектрах ЯМР могут быть расщеплены в мульти-плеты-дублеты, триплеты и т. д. Рассмотрим, например, спектры Н и хлороформа, обогащенного на 100% изотопом углерода Если поместить образец H lз в магнитное поле, протоны в ядре начнут прецессировать-, создавая в месте расположения друг друга дополнительное поле, направленное вдоль или против направления Яд. В каждой конкретной молекуле резонансный сигнал протона окажется вследствие этого в более сильном или более слабом поле, чем для хлороформа с немагнитным изотопом углерода СНСЦ. В образце содержится примерно равное количество молекул, в которых спин С направлен вдоль или против направления поля. Поэтому в ПМР-спектре СНСЦ будут наблюдаться две линии от эквивалентных в химическом отношении протонов. В этом случае принято говорить об одном сигнале ЯМР, расщепленном в дублет за счет спин-спинового взаимодействия с другим ядром. Аналогичное расщепление сигнала будет наблюдаться и в спектре ЯМР С хлороформа. Поскольку расщепление является результатом взаимодействия магнитных ядер внутри молекулы, оно зависит от магнитных свойств ядер и электронных свойств связей, по которым оно передается, но не от напряженности внешнего магнитного поля Яд. Поэтому расщепление измеряют в единицах частоты (Гц) на приборах с магнитами различной [c.292]


Смотреть страницы где упоминается термин Ядро магнитные свойства: [c.87]    [c.442]    [c.211]    [c.24]    [c.4]    [c.301]    [c.272]    [c.91]    [c.183]    [c.301]   
Биохимия Том 3 (1980) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Свойства ядра



© 2025 chem21.info Реклама на сайте