Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олефины хлором

    Один из методов приготовления 2,2,3-триметилбутана (триптана) заключается в реакции между цинкдиметилом и 2-хлор-2,3-диметил-бутаном [62]. При этом исходили из 3,3-диметилбутанола-2, дегидратацией которого были получены два изомерных олефина  [c.407]

    Индуцированное хлорирование с замещением атомов водорода. При хлорировании олефина одновременно с реакцией присоединения происходит замещение водорода хлором в продукте присоединения хлора. Поскольку в отсутствии олефина дихлориды не хлорируются с замещением атома водорода хлором, то реакция замещения рассматривается как индуцированная реакция. Индуцированная реакция хлорирования ин-гибитируется кислородом, а следовательно, очевидно, развивается как цепная реакция. При хлорировании смеси парафина и олефина хлор, присоединяется к олефину и одновременно водород замещается хлором у парафина. Реакция изучалась для пропан-пропиленовой и бутан-бутиленовой смесей. Газообразные олефины в темноте при температуре ниже 150° реагируют с хлором лишь медленно или совсем не реагируют, но они взаимодействуют энергично в присутствии какой-либо жидкой фазы. Смеси олефинов и парафинов при этих условиях реагируют быстро с образованием как продуктов присоединения, так и замещения [9]. Энергия, необходимая для реакции замещения, возможно получается за счет сильно экзотермичпой реакции присоединения. [c.63]


    Хлорирование при низких температурах (до 250 °С) ведет преимущественно к присоединению хлора по двойной связи, как это обычно имеет место в случае олефинов с прямыми цепями  [c.176]

    Такие реакции присоединения вызываются отщеплением хлора вместе со смежным атомом водорода в виде хлористого водорода, приводящим к образованию олефинового углеводорода. Отщепившийся хлористый водород присоединяется к образовавшемуся олефину, причем во многих случаях реакция протекает необратимо и, следовательно, исключается возможность повторного образования исходного хлор-производного. [c.178]

    Интересную возможность непрямого получения хлоруглеводородов представляет реакция присоединения к олефинам хлористых алкилов, содержащих атом хлора при вторичном или третичном углероде, в присутствии катализаторов Фриделя — Крафтса. [c.196]

    Известно, что к несопряженным циансодержащим а-олефинам, хлор-(алкокси)гидросиланы легко присоединяются с платиновыми катализаторами в условиях нагревания при атмосферном давлении [3, 7, 8]. [c.130]

    Из данных, приведенных в предыдущих разделах, с очевидностью следует, что концентрация производства исходных полупродуктов и мономеров (олефины, хлор, стирол, винилхлорид и др.), значительно опережает концентрацию производства полимеров, а также и других перечисленных выше производств продуктов органического синтеза. Поэтому мощности отдельных предприятий по производству олефинов, хлора, стирола, винилхлорида, как правило, значительно крупнее мощностей отдельных производств полимеризационных пластмасс и других продуктов органического синтеза, получаемых на базе продукции этиленовых установок. [c.101]

    При пропускании хлора в когазин II до теоретического содержания г-атом хлора на 1 г-мол (практически степень хлорирования контролируют непрерывным определением удельного веса), как известно, образуются не только монохлорпроизводные. Значительная часть когазина остается непрореагировавшей, в то время как в другие молекулы вступает два или большее число атомов хлора. Поэтому в продукте, получаемом после конденсации, еще содержатся исходные углеводороды. Так как часть продуктов хлорирования при конденсации с цинковой пылью претерпевает отщепление хлористого водорода и не реагирует с фенолом, в продукте конденсации исходные углеводороды содержат, кроме того, примесь олефинов. [c.246]


    Метод горячего хлорирования. Как уже было сказано, при хлорировании олефинов с прямой цепью при температурах до 250 °С в результата присоединения хлора к двойной связи образуются преимущественно дихлориды. [c.177]

    Олефины могут служить катализаторами для хлорирования парафиновых углеводородов, а также и для сульфохлорирования. По своей эффективности они уступают перекисям или другим соединениям, образующим радикалы. Технический когазин, содержащий до 10% олефинов, сульфохлорировать можно в темноте. Способ не имеет промышленного значения, так как образуется большое количество хлора в углеродной цепи, скорость реакции мала и применяемый катализатор быстро расходуется. Однако по некоторым соображениям этот способ представляет научный интерес. [c.371]

    Олефины дают при сульфохлорировании также продукты присоединения хлора, что ведет к образованию сульфохлоридов, сильно хлорированных в углеродной цепи. [c.373]

    После удаления олефинов взбалтыванием с концентрированной серной кислотой, промывки водой и последующей перегонки из этой смеси была получена с 85%-ным выходом смесь изомеров хлористого додецила с содержанием хлора 17,35%. [c.387]

    В настояшее время мы знаем, почему Шорлеммер получал всегда ошибочные результаты. При обработке ацетатом калия в ледяной уксусной кислоте продуктов хлорирования гексана или гептана олефины образуются очень легко при этом преимущественно реагируют вторичные хлориды, в которых хлор находится у третьего, четвертого, пятого и т. д. атома углерода. Хлор у второго атома углерода, с одной стороны, труднее отщепляется в виде хлористого водорода, чем хлор, смещенный к середине цепи, а с другой стороны, он легче вступает в реакцию двойного обмена. [c.538]

    Например, можно было бы поставить перед собой задачу установить положение атома хлора в молекуле индивидуального хлористого додецила. Для этого представим себе, что, отщепив хлор в виде хлористого водорода, мы получим два олефина, идентифицировав которые сможем затем найти положение, занимавшееся хлором  [c.549]

    Если не происходит изомеризации двойной связи, отщепление галоидоводорода от первичного галоидного алкила приводит к образованию одного единственного олефина. По правилу Бутлерова выделяющиеся в виде хлористого водорода атомы водорода и хлора отщепляются от двух соседних углеродов. [c.550]

    Наоборот, из вторичного галоидного алкила могут образовываться два изомерных олефина. Количественные соотношения, в которых образуются оба эти олефина, зависят от того, водород какой группы реагирует легче с хлором  [c.550]

    В 1795 г. путем отщепления воды от этанола с помощью концентрированной серной кислоты был получен этилен [1], ставший первым соединением ряда олефинов. Благодаря способности образовывать с хлором жидкий продукт, он получил название масло голландских химиков [2], от которого впоследствии было образовано наименование всего ряда простых ненасыщенных алифатических углеводородов. [c.7]


    Реакции хлорирования относятся к числу важнейших проц ессов нефтехимической нромышленности. Парафины и особенно олефины легко реагируют с хлором, давая в результате продукты, являюш иеся важнейшими промежуточными и конечными продуктами современной промышленности алифатической химии. Значение продуктов хлорирования метана, этана, этилена, нропена, пентана, а также высокомолекулярных парафиновых углеводородов, получаемых из парафинистых нефтяных фракций или синтезом Фишера-Тропша, в настояш ее время очень велико. [c.112]

    Бинарные смеси хлора с горючими углеводородами, спиртами, карбоновыми кислотами и хлорпроизводными углеводородами взрывоопасны в подавляющем большинстве случаев. Известно, что многие олефины (этилен, пропилен, н-бутилен, н-амилен) реагируют с хлором с заметной скоростью уже при 100 °С и даже при комнатной температуре с образованием продуктов присоединения [c.348]

    Реакция, катализируемая галогенидами металлов. В результате реакции изобутана с хлористым аллилом при температуре —10° С с образуются 1-хлор-3,4-диметилпентан и 1,2-дихлор-4,4-диметилпентан с выходами 35—40% и 13—15% соответственно [53]. Образование обоих указанных продуктов характерно для цепного механизма, аналогичного механизму алкилирования изопарафиновых углеводородов олефинами. Стадии реакции можно представить следующим образом  [c.232]

    В качестзе исходных веществ для получения ацетиленов этим методом можно использовать дихлориды и дибромиды олефинов, хлор- и бромэтилены и моно- или дихлорнроизводные, пригото- [c.7]

    Производные ароматических углеводородов, например, хлорбензол, фенол и многоатомные фенолы, алкилируются олефинами в ядро, за исключением случаев, когда образуются эфиры фенолов. При алкилировании олефинами хлор- и дихлорбензола [10] образуются сооггветствующие хлоралкилбензолы, из которых дегидрированием можно получить соответствующие хлорстиролы  [c.265]

    Исследуя реакционную способность хлора и брома в галоидных гексадецнлах в зависимости от положения галоида в цепи парафинового углеводорода, Азингер и Экольдт нашли [22], что вторичные гало-гениды, у которых галоид связан с третьим—восьмым атомами углерода, реагируют с циклогексиламином одинаково быстро. Галоид, расположенный у второго атома углерода, хотя тоже является вторичным, но реагирует в 2 раза быстрее, чем остальные изомеры. К тому же галоид Ei положениях 3, 4, 5 и т. д. сам по себе легче отщепля ется в виде га-лоидоводорода. В результате исследований Азингера [23] стало известным, что при дегидрохлорировании хлористых алкилов общей формулы Ri H2 H 1 H2R2 оба теоретически возможных олефина образуются в эквимолярных количествах. Если хлор расположен у второго атома углерода, получается 33% олефина с концевой двойной связью и 67% другого изомера  [c.538]

    Введение галоида путем замещения в олефины с нормальной цепью, например в этилен, пропилен, бутилен и т. д., описано лишь в последнее время в ряде патентов [5] и в работе Гролла и Хэрна [6]. Этим исследователям удалось осуществить превращение этилена в хлористый винил и пропилена — в хлористый аллил, действуя на олефины хлором в газовой фазе и при высокой температуре (обычно работают при температурах 200—600°). Для превращения пропилена в хлористый аллил предварительно нагретый пропилен подвергают действию хлора при 600° в отсутствие катализаторов. При этом выход хлористого аллила составляет 75%, а выход дихлорпропана — менее 1%. Из пропилена и брома с выходом 65% был получен бромистый аллил. Во избежание коррозии и взрывов при проведении этих реакций требуется соблюдение особых условий и соответствующая аппаратура. [c.318]

    Подробно изучено сопряженное нитрофторирование олефинов, хлор- и фторолефинов действием смеси азотной и фтористоводородной кислот [60, 61, 142, 143], что является общим способом синтеза -фторнитроалканов. Показано, что скорость реакции зависит от природы двойной связи нитрогруппа всегда присоединяется к наиболее гидрогенизованному атому углерода [61]  [c.129]

    Мерсьеро [2] описал способ обработки олефинов хлором в башне, в которую вводится мелко раздробленная струя охлажденной воды или хлориро ванных углеводородов. Оптимальная температура реакции 15 °С. Предложенный Мерсьеро аппарат состоит из вертикальной реакционной башни, нижний конец ко-то рой помещен в сосуд, предназначенный для сбора воды и продуктов хлорирования. Хлор и этилен вводятся в нижнюю часть башни через отверстия, обеспечивающие хорошее перемешивание реакция идет по мере продвижения газообразной смеси кверху. [c.95]

    Рассмотрим производство наиболее массового синтетического моющего вещества — алкилбензолсульфоната натрия (сульфоно-ла). Сульфонол получают на основе алкилпроизводных бензола. Свойство, строение и технология получения сульфснола зависят от того, чем проводится алкилирование бензола а-олефинами хлор-производными нормальных парафинов олефинами, полученными дегидрохлорированием парафинов хлорпроизводными алкилнаф-тенов или парафина тетрамерами пропилена. Последний метод был широко распространен до 1966 г., но сейчас вытеснен способом получения сульфонола на основе бензола и а-олефинов, так как алкилбензолсульфонаты, полученные таким методом, имеют высокую биоразлагаемость. [c.161]

    По поведению ири хлорпровании замещением низкомолекулярные олефины можно разделить на две группы. К первой группе относятся олефины с прямой цепью, как этилен, нропен, м-бутен и м-иентен, реагирующие с хлором при окружающей температуре только с образованием продуктов присоединения. Вторая группа включает в себя углеводороды, которые при равных условиях реагируют исключительно путем замещения с сохранением двойной связи в молекуле вновь образовавшегося хлорироизводного. К ним относятся олефины, у которых двойная связь находится в боковой цени, как, например, изобутен, трпметилэтилен. [c.168]

    При присоединении хлорноватистой хаюлоты к олефинам, например к этилену, образуются хлоралкоголи — соединения, в которых атом хлора и гидроксильная группа находятся у соседних углеродных атомов. Такие соединения называют хлоргидринами. Реакцией хлоргидринов со щелочами, сопровождающейся отщеплением хлористого водорода, очень легко образуются циклические эфиры, так называемые окисные соединения  [c.183]

    Наиболее пригодным оказался четыреххлористый углерод, так как он, с одной стороны, из всех инертных по отношению к хлору и технически легко доступных растворителей имеет наивысшую температуру кипения, а с другой — легко может быть отделен от продуктов моно-сульфохлорирования газообразных парафиновых углеводородов, температура кипения которых примерно на 100°,выше температуры кипения растворителя. Целесообразно очищать исходный углеводород промывкой концентрированной серной кислотой от олефинов с одинаковыл числом углеродных атомов, которые могут содержаться в углеводороде в небольших количествах. [c.391]

    Прохлорировав н-гексан (из маннита) [12] и отщепив спиртовой щелочью хлористый водород от хлористых гексилов, он получил смесь гексиленов, которую оставил на несколько недель стоять в темноте с концентрированной соляной кислотой в хорошо закрытых склянках. При последующей перегонке в головных погонах не оказалось никакого гексилена, так что весь олефин перешел в хлористый алкил, кипевший при 124—125°. Этот хлористый алкил был нагрет с ацетатом свинца и ледяной уксусной кислотой при 125°, причем произошло быстрое взаимодействие. Полученный сложный эфир подвергся омылению, и спирт был разогнан на две фракции, каждую из них окисляли отдельно. Поскольку было установлено только образование уксусной и масляной кислот, пропионовая кислота получалась, очевидно, в количествах, не обнаруживаемых применявшимися методами. Таким образом, вероятность присутствия этилпропилкетона, а следовательно, гексанола-3, была незначительна. Поэтому Шорлеммер мог лишь снова подтвердить то, что нашел уже 7 лет назад, а именно, что при действии хлора на н-гекса.н образуются только первичный и вторичнин хлористые алкилы. [c.536]

    Из-за опасности пиролиза вряд ли целесообразно проводить хлорирование при температурах выше 600° при этом вследствие более легкого дегидрохлорироваиия 2-хлорпропана должно было бы наступать обогащение продуктов реакции 1-хлорпропаном. Такое обогащение одним продуктом за счет другого происходит особенно легко, когда при хлорировании образуются третичные хлориды. В этих случаях всегда следует считаться с возможностью пиролиза. При высоких температурах он может наступить даже в стеклянной аппаратуре, причем в результате указанного обоганхения содержание более стабильных продуктов превышает величину, получающуюся при отсутствии селективного хлорирования. Степень пиролиза можно легко установить, определяя выделившийся при хлорировании хлористый водород и сравнивая его количество с количеством прореагировавшего хлора. Если выход хлористого водорода иэ прореагировавшего хлора превышает теоретический, это происходит вследствие пиролиза. При этом в отходящих газах должны присутствовать олефины, а в продуктах реакции, если работают по рециркуляционному методу, содержится больше дихлоридов, чем это должно быть при таком же отношении углеводорода к хлору и прн нормально протекающем хлорировании. [c.546]

    Если к какому-нибудь хлористому алкилу, который пропускают через стеклянную трубку в условиях, способствующих лишь очень слабому дегидрохло рированию, добавить немного хлора, сразу наступает заметное образование олефинов. Температуру дегидрохлорироваиия. можно при этом снизить на 100—200°. Так, например, нз дихлорэтана при 400° образуется 2% хлорвинила, а при 500° — 30% [40]. Если к дихлорэтану прибавить 0,5% хлора, то уже при 300° дегидрохлорирование проходит на 30%, а при 370° выход хлорвинила достигает 70%. [c.546]

    Все эти расчеты и выводы являются точными лишь в том случае, если в процессе реакции не происходит дегидрохлорированля с образованием олефинов. Образование дихлоридов путем последующего присоединения хлора по двойной связи протекает по другим закономерностям, чем при прогрессирующем хлорировании монохлорпроизводных поэтому, в смеси дихлориды содержатся в значительно большем количестве, чем в отсутствие реакции дегидрохлорироваиия. Это особенно легко проходит при термическом хлорировании, при переработке высших парафиновых углеводородов или при рециркуляции непрореаги-ровавшего углеводорода, содержащего заметные количества олефинов.  [c.595]

    Ниже кратко описывается промышленный метод хлорирования олефинов (рис. 44). В специальном смесительном сопле, помещенном в подогревательную печь, перемешивают до получения однородной смеси чистый пропилен, нагретый примерно до 350—400 °С, и чистый безводный, неподогретый хлор. Во цзбежание накопления хлора и связанного с этим избыточного хлорирования пропилен пропускают через два боковых отвода, а хлор — через главную трубу. Затем реакционная смесь, содержащая пропилен и хлор (лучше всего в отдошении 5 1), поступает в реактор, представляющий собой стальной резервуар. Благодаря выделяющемуся при хлорировании теплу в реакторе устанавливается температура 500—530 °С  [c.179]

    В 2,2-диметил-1-хлорбутене-2 можно было ожидать такую же реакционную способность хлора, как и в /3-металлилхлориде, однако при реакции с изопропилмагнийхлоридом наблюдался лишь очень незначительный выход ожидавшегося олефина [62]  [c.410]

    При конденсации вторичного хлорида (например, изопропилхлорида [47] или циклогексилхлорида [49]) с этиленом в присутствии хлористого алюминия обнаружены продукты взаимодействия одной молекулы хлорида с двумя молекулами олефина. Образование их может быть объяснено следующим образом первичные продукты реакции (изоамилхлорид и 2-циклогексилэтилхлорид, соответственно) содержат третичные атомы углерода, и происходит изомеризация промежуточных ионов карбония до третичных ионов. Так как третичные йоды карбония присоединяются к олефинам гораздо легче, чем вторичные, то образовавшиеся третичные ионы будут присоединяться гораздо быстрее, чем исходные вторичные ионы (изопропил и циклогексил). Поэтому конечные продукты подобны образующимся при конденсации этилена с соответствующими третичными хлоридами 1-хлор-3,3-диметилпентан и 1-(2-хлорэтил)-1-этилциклогексан, [c.220]

    Процесс дихлорирования протекает но двум механизмам 1) путем потери хлористого водорода с последующим присоединением хлора к образовавшемуся олефину и 2) путем последовательного замещения. Медленное термическое хлорирование благоприятствует механизму тогда как при быстрых жидкофазных или парофазных термических реакциях, протекающих за один проход через зону реакции, или в условиях низкотемпературной фотохимической реакции механизм 1 практически исключается. [c.59]

    С другой стороны, реакция присоединения галоида к олефинам сильно экзотермична. Так, нанример, при присоединении хлора к этилену высвобождается 41 ООО кал, JlS ° = —27,5 кал/молъ град. При температурах ниже 1000° AF° отрицательно, т. е. равновесие смещено в сторону продуктов присоединения [8]. [c.60]

    Декалин подвергается хлорированию нри 0° в присутствии следов иода. Реакционная смесь после введения 1 мол-экв хлора состоит из олефинов, смеси цис- и трамс-2-хлордекалинов и небольшого количества дихлордекалинов. Чистые цис- и -декалины превращаются анало- [c.65]


Смотреть страницы где упоминается термин Олефины хлором: [c.21]    [c.500]    [c.815]    [c.168]    [c.183]    [c.225]    [c.547]    [c.349]    [c.373]    [c.376]   
Титриметрические методы анализа органических соединений (1968) -- [ c.59 , c.182 , c.183 ]





ПОИСК





Смотрите так же термины и статьи:

Действие хлора и хлорсодержащих соединений на олефины

Обожженная глина как катализатор при присоединении хлора к олефинам

Олефины, содержащие хлор, азот, серу и кремний

Песок как катализатор при присоединении хлора к олефинам

РЕАКЦИИ ОЛЕФИНОВ С СОЕДИНЕНИЯМИ ХЛОРА И БРОМА

Разложение галоидных алкилов в олефины с помощью хлора

Хлор арил метилпропан Хлор арил р олефины

Хлорирование олефинов с замещением водорода хлором

хлор хлорметил пропеном прочность связи олефин

хлор хлорметил пропеном я олефин карбонильные



© 2020 chem21.info Реклама на сайте