Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нейроны сенсорные

Рис. 6.27. Упрощенная схема прохождения нервного импульса. Альтернативные названия нейронов сенсорный нейрон — афферентный нейрон, рецепторный нейрон моторный нейрон — эфферентный нейрон, эффектор интернейрон — промежуточный нейрон, контактный нейрон, вставочный нейрон. Пользуйтесь лишь одним названием для каждого Рис. 6.27. Упрощенная схема прохождения <a href="/info/169060">нервного импульса</a>. Альтернативные названия <a href="/info/1277195">нейронов сенсорный нейрон</a> — афферентный <a href="/info/101636">нейрон</a>, рецепторный <a href="/info/101636">нейрон</a> моторный <a href="/info/101636">нейрон</a> — эфферентный <a href="/info/101636">нейрон</a>, <a href="/info/33680">эффектор</a> <a href="/info/509531">интернейрон</a> — промежуточный <a href="/info/101636">нейрон</a>, контактный <a href="/info/101636">нейрон</a>, <a href="/info/101639">вставочный нейрон</a>. Пользуйтесь лишь одним названием для каждого

    Простейшая рефлекторная дуга у человека образована двумя нейронами — сенсорным и двигательным. Примером простейшего рефлекса может служить коленный рефлекс. В других случаях в рефлекторную дугу включены три нейрона — сенсорный, вставочный и двигательный. В упрошенном виде такой рефлекс, возникающий, например, при уколе пальца булавкой, представлен на рис. 17.17. Это спинальный рефлекс, т. е, его дуга проходит через спинной, а не через головной мозг. Важно подчеркнуть, что в данном случае нервные волокна идут через спинной мозг в одном направлении. Отростки сенсорных нейронов входят в спинной мозг в составе заднего корешка, а отростки двигательных нейронов — в составе переднего. Все тела [c.298]

Рис. I8-6S. Микрофотография сенсорного ганглия, который рос в течение 36 ч in vitro в присутствии фактора роста нервов Л) и без него (Б). Нейриты отрастают от сенсорных нейронов только при наличии в среде этого фактора. В каждой культуре содержатся также шванновские клетки, которые мигрируют из ганглия фактор роста нервов на них не действует. (С любезного разрешения dive Thomas.) Рис. I8-6S. <a href="/info/1310580">Микрофотография</a> <a href="/info/510633">сенсорного ганглия</a>, который рос в течение 36 ч in vitro в присутствии <a href="/info/265952">фактора роста нервов</a> Л) и без него (Б). Нейриты отрастают от сенсорных нейронов только при наличии в среде этого фактора. В каждой культуре содержатся также <a href="/info/105701">шванновские клетки</a>, которые мигрируют из ганглия <a href="/info/265952">фактор роста нервов</a> на них не действует. (С любезного разрешения dive Thomas.)
    Фактор роста нерва также стимулирует поглощение уридина, образование полисом, синтез белков, липидов, РНК и потребление глюкозы. Благодаря этому он способствует росту и выживанию симпатических и сенсорных нейронов. NGF активирует рост аксонов и дендритов, осуществляя контроль за сборкой микротрубочек. Если антитела против NGF вводятся мыши, ее симпатическая нервная система дегенерирует. Роль NGF как трофического фактора можно проиллюстрировать на примере его способности индуцировать тирозингидроксилазу — ключевой фермент синтеза катехоламинов. [c.327]

    Представьте себе, что нервный рецептор в коже или в каком-либо другом из органов чувств воспринимает сигнал. Этот сигнал проходит по сенсорному нейрону (афферентное волокно) вверх к головному мозгу. Пройдя два или более синапса (обычно один в спинном мозге и один в таламусе), сигнал в конце концов попадает в определенную сенсорную область коры больших полушарий. Отсюда в модифицированной форме он распространяется через вставочные нейроны практически по всей коре мозга. Как в синапсах, так и в коре распространение сигнала [c.329]


    Как указывалось в гл. 9, рецепторы серотонина связаны с аденилатциклазой и серотонин стимулирует образование сАМР. Согласно общей схеме, представленной на рис. 9.12, все внутриклеточные эффекты циклического АМР, возможно, обусловлены сАМР-зависимыми протеинкиназами, и представляется логичным, что наблюдаемая сенситизация имеет некоторое отно-щение к фосфорилированию ключевого белка. Предварительные электрофизиологические эксперименты показали, что расслабление основано на продленных потенциалах действия и повышенной секреции медиатора иннервированным сенсорным нейроном. Экзогенный серотонин и блокатор калиевого канала [c.347]

    Нервные клетки, или нейроны, принимают, проводят и передают электрические сигналы. Значение этих сигналов различно и зависит от того, какую роль играет данная клетка в функционировании нервной системы в целом (рис. 18-1). В мотонейронах (двигательных нейронах) сигналы служат командами для сокращения определенных мышц. В сенсорных (чувствительных) нейронах сигналы передают информацию о раздражителях определенного типа, таких как свет, механическая сила или химическое вещество, воздействующих на тот или иной участок тела. Сигналы интернейронов (вставочных нейронов) представляют собой результаты совместной переработки сенсорной информации из нескольких различных источников, приводящей к формированию адекватных двигательных команд. Но, несмотря на различные значения [c.71]

    Важное значение в сенсорной физиологии имеет понятие рецептивного поля. Для любого нейрона сенсорного пути рецептивное поле состоит из всех тех сенсорных рецепторов, которые могут влиять на его активность. Так, у клетки А на рис. 11.4 рецептивное поле состоит из двух рецепторов (2 и 3), которые соединены с этой клеткой. У клетки В на втором уровне этой системы рецептивное поле состоит из рецепторов 1, 2 и 3. Связи с клеткой могут быть возбуждающими или тормозными, и они могут идти через вставочные нейроны на данном уровне, а также через релейные нейроны, соединяющие разные уровни. Как мы увидим в следующих главах, свойства рецептивных полей в общем отражают возрастающую степень переработки информации и извлечения признаков, которое происходит в нейронах на все более высоких уровнях сенсорных путей. [c.277]

    ОТ СОМЫ. Таким образом, дендриты и аксоны отвечают соответственно за получение и передачу сигнала. Нейрон может иметь множество дендритов, но только один аксон, который, однако, способен ветвиться, образуя коллатерали. Нервные волокна несут две функции они либо проводят импульс от сенсорного рецептора к центральной нервной системе, либо от центральной нервной системы к органу-мишени. Волокна первого типа назы- [c.25]

    Процессы, происходящие в коре больших полушарий, чрезвычайно сложны и мало исследованы. Мы все еще не знаем, каким образом мозг инициирует произвольные движения мышц. Установлено, однако, что сигналы, выходящие из мозга по направлению к мышцам по эфферентным волокнам, генерируются в больших моторных нейронах двигательной зоны коры эта зона расположена в виде полосы, идущей через весь мозг и прилегающей к сенсорной зоне (рис. 16-5). Аксоны моторных нейронов образуют пирамидный тракт, проводящий импульсы вниз к синапсам в спинном мозгу и оттуда к нервно-мышечным соединениям. Последние представляют собой специализированные синапсы, в которых происходит высвобождение ацетилхолина, передающего сигнал непосредственно мышечным волокнам. Волна деполяризации, проходящая по поверхности клетки и Т-трубочкам (гл. 4, разд. Е, 1 рис. 4-22, Д), инициирует высвобождение кальция и сокращение мышцы. [c.329]

    Мы еще не рассматривали вопроса о том, как происходит активация сенсорных нейронов. Для биохимиков особенно загадочен механизм функционирования рецепторов вкуса и обоняния. Вполне очевидно, что различные вещества обладают разными вкусом и запахом, но определить связь между этими характеристиками и химической структурой веществ совсем непросто. [c.347]

    ТЭА действуют подобным же образом. Интересно, что инъекция каталитической субъединицы сАМР-зависимой протеинкиназы в сенсорный нейрон стимулировала расслабление, а инъекция ингибитора протеинкиназы снимала это действие. Кандел и сотр. показали, что серотонин, а также вводимая протеинкиназа вызывают благодаря снижению калиевой проводимости значительное пролонгирование потенциалов действия и это в свою очередь ведет к более длительной деполяризации нервного окончания и увеличению входящего Са2+-тока. Более высокая концентрация Са + в нервном окончании вызывает более интенсивное высвобождение медиатора, т. е. более эффективную [c.347]

    На каждой стороне тела клетки выходят из нервного гребня по двум главным путям один из них пролегает непосредственно под эктодермой, а другой ведет в глубь тела через сомиты (рис. 15-74). Из клеток, мигрирующих под самой эктодермой, образуются пигментные клетки кожи, а нз тех, что избрали более глубинный путь,-различные нервные ткани и пигментные клетки внутренних органов. Место назначения клетки определяется ее положением на продольной оси тела это было ясно продемонстрировано для клеток нервного гребня, движущихся глубинными путями и образующих периферические нейроны вегетативной нервной системы. Эти нейроны объединяются в ганглии, например сенсорные ганглии, ресничный ганглий около глаза, це- [c.123]


    Через преобразователи в нервную систему поступает огромный поток сенсорной информации. Мозг должен переработать эту информацию и извлечь из нее существенные элементы он должен выделить слова из шумового фона, узнать лицо среди разного рода светлых и темных пятен и т.п. Это второй, нейронный, этап переработки сенсорной информации, он требует более тонких и сложных операций, чем переработка на уровне преобразователей. [c.119]

    Состояние внешнего мира представлено в нервной системе потенциалами в упорядоченных клеточных подсистемах, различных для разных аспектов внешнего мира, воспринимаемых преобразователями разного типа. В пределах данной модальности, такой как зрение, первичное отображение осуществляется в самих рецепторных клетках. Потенциал каждого фоторецептора отражает яркость определенной точки видимой картины. Информация от фоторецептора передается через последовательные группы нейронов и перерабатывается на каждом этапе, пока не достигнет высших мозговых центров, где комбинируется с информацией, приходящей от других сенсорных систем, и используется для выработки выходных сигналов, управляющих поведением. [c.125]

    Каждый периферический нерв состоит из множества чрезвычайно длинных отростков нервных клеток-аксонов, из которых одни принадлежат сенсорным нейронам и передают информащпо мозгу, а другие принадлежат мотонейронам и передают команды от мозга к мышцам. Тела нервных клеток расположены либо внутри центральной нервной системы (в случае мотонейронов, управляющих [c.72]

    Сенсорную область, на которую должен попасть стимул, чтобы повлиять на данный нейрон, называют рецептивным полем этого нейрона (рис. 18-54). Условия эффективности стимуляции каждого отдельного фоторецептора очень просты на данный участок сетчатки должен падать свет с подходящей длиной волны. Но по мере перехода к высшим уровням зрительной системы условия эффективности стимула постепенно усложняются. Примером могут служить ганглиозные клетки сетчатки. Рецептивные поля этих клеток, как правило, шире, чем у отдельных фоторецепторов, и частично перекрывают друг друга. Типичная ганглиозная клетка отвечает на равномерное освещение очень слабо. Более того, небольшое пятно света, занимающее лишь часть рецептивного поля клетки, вызывает противоположные эффекты в зависимости от того, где оно находится-в центре илн ближе к периферии рецептивного поля напрнмер, оно может возбудить ганглиозную клетку, если будет находиться в центре, но окажет тормозное действие, находясь на периферии. Для такой ганглиозной клетки наиболее эффективным стимулом будет яркое круглое пятно, окруженное темным кольцом (рис. 18-55). Другие ганглиозные [c.127]

    Введение ФРНТ животному, начиная с первого дня рождения, вызывает гипертрофию симпатической нервной системы. Такое постнатальное введение ФРНТ не влияет на нейроны сенсорных ганглиев, так как сенсорные клетки чувствительны к ФРНТ только в эмбриональном периоде. [c.335]

    Какие химические процессы лежат в основе мышления и создают поток сознания в мозге человека Поступление импульсов в мозг оказывает большое влияние на сигналы, идущие на периферию по моторным нейронам. Известно также, что мозг обладает собственными эндогенными электрическими ритмами, которые не зависят от импульсов, поступающих по сенсорным нейронам. У примитивных беспозвоночных источником таких ритмов служат особые нейроны — водители ритма (пейсмейкеры). Эти нейроны спонтанно возбуждаются с постоянными интервалами. По-видимому, в их клеточных мембранах происходят последовательные циклические изменения ионной проницаемости, достаточные для возникновения потенциала действия. Примеры работы трех типов нейронов — водителей ритма у моллюсков [130] приведены на рис. 16-12. Вполне вероятно, что аналогичный феномен лежит в основе работы мозга человека. Вероятно, сознательная мысль возникает при сочетании ритмов от эндогенных водителей ритма с импульсацией, поступающей от сенсорных нейронов. Возвращаясь к примитивным организмам, любопытно сравнить спонтанный ритм нейронов—водителей ритма с периодическим выбросом сАМР клетками 01с1уо51еШит (гл. 6. разд. 5). Может быть, эти два феномена по существу имеют много общего. [c.350]

    Наиболее изученный трофический фактор — фактор роста нерва (NGF), открытый Леви-Монталсини и Гамбургером в 1950 г, [5]. Этот фактор стимулирует рост периферических сенсорных н симпатических нейронов и необходим для выживания зрелого синаптического нейрона. NGF стимулирует также разветвления образований аксонального типа эмбриональных клеток ганглия в культуре (рис. 11.3,6). Этот эффект используется для его биологического тестирования и выделения. NGF найден во многих нервных и иных тканях, но не в крови. [c.325]

    Любой сигнал, получаемый нервной системой, должен прежде всего преобразоваться в электрический. Значение электрического сигнала будет зависеть от устройства, осушествившего этот перевод из одной формы в другую-от так называемого преобразователя. Каждый преобразователь реагирует на внешние факторы (или события) определенного рода, такие как свет, температура, химическое вешество, механическая сила или перемешение. В одних случаях преобразователь представляет собой часть нейрона, прово-дяшего импульсы, в других-это часть сенсорной клетки, специально приспособленной для преобразования сигналов, но не участвующей в осуществлеини дальней связи такая клетка передает затем свои сигналы близлежащему нейрону через синапс. [c.119]

    Л1 12 300, который способствует выживанию в культуре и появлению отростков у сенсорных нейронов цыпленка, однако этот белок отличается от NGF по антигенным и функциональным свойствам. Наконец, имеется очевидное, хотя и косвенное, свидетельство существования фактора роста мотонейронов (MNGF), влияющего на соматические двигательные нейроны. Возможно, MNGF и есть еще один важный трофический фактор, который бы следовало охарактеризовать биохимически. Однако из-за низкой концентрации этого фактора в соответствующих тканях его дальнейшее исследование потребует применения методов генной инженерии. [c.328]

    Элегантные эксперименты, касающиеся этих вопросов, были проделаны в основном в лаборатории Е. Кандел они представлены на рис. 11.11. Имеются шесть мотонейронов, иннервирующих жабры. Они возбуждаются (через несколько интернейронов) от 24 сенсорных нейронов, связанных с сенсорными клетками сифона (который также является частью респираторного органа), получающего и передающего осязательный стимул. При длительной повторяющейся стимуляции происходит привыкание. Но здесь мы остановимся на другой схеме когда осязательный стимул действует не на сифон, а на голову данного организма, наблюдается сенситизация, а не привыкание. Эта сенситизация опосредована интернейронами, использующги. ми серотонин в качестве нейромедиатора. [c.346]

    Разработка систем электронный нос и электронный язык стимулируется желанием смоделировать и расширить возможности, а в некоторых случаях заменить такие человеческие способности, как обоняние и восприятие вкуса. Устройство таких сенсорных систем основано на принципах организации биологических систем — массивов неспецифичных рецепторов с последующим распознаванием образов нейронной сетью головного мозга человека, Поскольку в сенсорных системах используются многие методы обработки данньгс высокой размерности и нейро-компьютерные подходы, то электронный нос и электронный язьпс можно рассматривать как специальную [c.712]

    В. Одновременно стенка глазного пузырька, обращенная к эпидермису, вдавливается кзади, и прырек приобретает форму бокала. Ближайший к хрусталику слой глазного бокала дифференцируется в нервный слой сетчатки, включающий собственно фоторецепторы и нейроны, которые передают сенсорные импульсы в мозг (см. рис. 16-8). Другой слой дифференцируется в пигментный эпителий сетчатки. [c.133]

    Клетка скелетной мышцы позвоночного принимает обычно только один сигнал от единственного мотоненрона, тело которого находится в спинном мозгу. В отличие от этого на самом мотонейроне синапсы образуют несколько тысяч нервных окончаний от сотен и тысяч различных нейронов его тело и дендриты почти полностью покрыты синапсами (рис. 18-35). Некото1Нле из этих синапсов передают сигналы от головного мозга, другие достввляют сенсорную информацию от мышц и кожи, третьи сообщают результаты вычислений , производимых вставочными нейронами спинного мозга. Мотонейроны должны интегрировать информацию, получаемую из этих разнообразных источников, и принимать решение отвечать ли на нее, посылах сигналы по своим собственным аксонам, или же оставаться в покое. [c.104]

    Прикосновение к сифону ведет к возбуждению грушш сенсорных нейронов. Эти нейроны образуют возбуждающие синапсы на других нейронах, которые непосреяственно управляют мышцами, втягивающими жабру. Реакцию последней группы нейронов на импульсы от сенсорных нейронов можно регистрировать внутриклеточным электродом оказывается, во время привыкания величина постсинаптического потенциала при повторном возбуждении уменьшается. При сенситизации наблюдается обратный эффект-постсинаптический потенциал возрастает. И в том и в другом случае изменение величины потенциала-это результат изменения количества медиатора, высвобождаемого из пресинаптических окончаний возбужденных сенсорных нейронов. Высвобождение медиатора контролируется ионами Са , входящими в окончание под действием нервных импульсов. В случае привыкания повторяющееся возбуждение сенсорных клеток модифицирует белки каналов в окончаниях их аксонов таким образом, что приток Са в клетку уменьшается напротив, при сенситизации поступление Са в клетку возрастает. Наиболее понятны молекулярные механизмы изменений, происходящих при сенситизации. [c.117]

    Такой детальный анализ всей цепи событий оказался возможным благодаря крупным размерам нейронов (порядка 100 мкм), которые легко идентифицировать, что позволяет вводить в клетку микрозлектроды и производить внутриклеточные инъекции. Например, роль фосфорилярования, осуществляемого протеинкиназой, была установлена путем прямой инъекции протеин-киназы в сенсорный нейрон наступавшая при этом сенситизация была неотличима от сенситизации, вызываемой раздражением облегчающих нейронов. [c.117]

    Почти в точности на тех же принципах основано преобразование сигналов в органах чувств. Это можно хорошо проиллюстрировать иа примере мышечных рецепторов растяжения, где первоначальный стимул, вызывающий изменение проницаемости мембраны, имеет механическую, а не химическую природу. Рецепторы растяжения доставляют нервной системе информацию о длине мышцы и скорости ее изменения. Эта сенсорная обратная связь (наряду с сигналами от головного мозга и некоторых частей спинного мозга) помогает регулировать импульсацию двигательных нейронов, как это объяснено в подписи к рис. 18-45. Каждая мышца содержит группы видоизмененных мышечных волокон, образующих так называемые мышечные веретена. Каждое отдельное волокно в веретене обвито окончаниями сенсорных нейронов (рис. 18-45). При растяжении волокон веретена в этих нейронах возникают импульсы (потенциалы действия), которые передаются в спинной мозг. Электрическое поведение одного сенсорного нейрона можно исследовать с помошью внутриклеточного электрода, помещенного около того места, где нейрон прилегает к волокну. Частота импульсного разряда градуально [c.119]

    Конвергенция, дивергенция и латеральное торможение встречаются в нервной системе повсюду и играют важную роль в локальной обработке информации многими группами нейронов, лежащих рядом друг с другом н имеющих дело со связанными между собой сенсорными данными. В качестве следующего простого (хотя и гипотетического) примера на рис. 18-58 показано, каким образом корковая клетка могла бы избирательно реагировать на полоску, ориентированную определенным образом, в результате конвергенции сигналов от ряда ганглиозных клеток сетчатки. При помощи подобных механизмов типичный нейрон высшего уровня зрительной системы, возбуждаемый комбинацией сигналов от группы нейронов низщего уровня, может выявлять и более абстрактные, более сложные черты данного комплекса зрительных стимулов. Таким образом, информация, заключенная в электрическом сигнале отдельного нейрона, постепенно обогащается по мере передачи ее вверх по зрительным путям. [c.129]

    Специальные преобразователи переводят сенсорные стимулы в форму нервных сигналов. Например, в рецепторе растяжения мышцы окончание сенсорного нерва деполяризуется при растяжении и величина деполяризации-рецепторный потенциал-для дальнейшей передачи перекодируется в частоту импульсного разряда. Слуховые волосковые клетки, избирательно реагирующие на звуки определенной частоты, сами не посылают импульсов, а передают сигналы о величине рецетпорного потенциала соседним нейронам через химические синапсы. Таким же образом действуют фоторецепторы глаза. В фоторецепторах свет вызывает конформационное изменение молекул родопсина, и это благодаря участию внутриклеточного второго посредника ведет к закрытию натриевых каналов в плазматической мембране, к ее гиперполяризации и в результате-к уменьшению количества высвобождаемого медиатора. Далее вставочные нейроны передают сигнал ганглиозным клеткам сетчатки, которые пересылают его в мозг в виде потенциалов действия. Проходя череъ нейронную сеть с конвергентными, дивергентными и тормозными латеральными связями, информация подвергается обработке, благодаря которой клетки высших уровней зрительной системы могут выявлять более сложные особенности пространственного распределения световых стимулов. [c.130]


Библиография для Нейроны сенсорные: [c.9]   
Смотреть страницы где упоминается термин Нейроны сенсорные: [c.139]    [c.141]    [c.329]    [c.342]    [c.357]    [c.148]    [c.229]    [c.347]    [c.348]    [c.72]    [c.111]    [c.117]    [c.120]    [c.120]    [c.121]    [c.133]    [c.134]    [c.137]    [c.137]   
Биохимия Том 3 (1980) -- [ c.357 ]

Молекулярная биология клетки Том5 (1987) -- [ c.72 , c.117 , c.137 ]




ПОИСК







© 2022 chem21.info Реклама на сайте